Menu Close

find-the-general-formula-0-pi-2-tan-x-dx-




Question Number 97928 by  M±th+et+s last updated on 10/Jun/20
find the general formula  ∫_0 ^(π/2) tan^α (x) dx
findthegeneralformula0π2tanα(x)dx
Answered by abdomathmax last updated on 10/Jun/20
I =∫_0 ^(π/2)  tan^α xdx   changement tanx =t  give  I =∫_0 ^∞   ((t^α  )/(1+t^2 ))dt    also changement t =u^(1/2)   give I =∫_0 ^∞   (u^(α/2) /(1+u))(1/2) u^(−(1/2))  du  =∫_0 ^∞   (u^((α−1)/2) /(1+u))du    we hsve proved that ∫_0 ^∞  (t^(a−1) /(1+t))dt  =(π/(sin(πa))) if 0<a<1 ⇒  I = ∫_0 ^∞   (u^(((α+1)/2)−1) /(1+u))du =(π/(sin((π/2)(α+1)))) =(π/(cos(((πα)/2))))  so ∫_0 ^(π/2)  tan^α xdx =(π/(cos(((πα)/2))))  conditions!      0<((α+1)/2)<1 ⇒  0<α+1<2 ⇒−1<α<1  to get the convergence
I=0π2tanαxdxchangementtanx=tgiveI=0tα1+t2dtalsochangementt=u12giveI=0uα21+u12u12du=0uα121+uduwehsveprovedthat0ta11+tdt=πsin(πa)if0<a<1I=0uα+1211+udu=πsin(π2(α+1))=πcos(πα2)so0π2tanαxdx=πcos(πα2)conditions!0<α+12<10<α+1<21<α<1togettheconvergence
Commented by  M±th+et+s last updated on 11/Jun/20
thank you sir
thankyousir
Commented by mathmax by abdo last updated on 11/Jun/20
you are welcome .
youarewelcome.

Leave a Reply

Your email address will not be published. Required fields are marked *