Menu Close

find-the-general-solution-to-1-a-sin-x-b-cos-x-dx-and-1-a-cos-x-bsin-x-dx-where-a-b-are-constants-




Question Number 93098 by Rio Michael last updated on 10/May/20
find the general solution to   ∫ (1/(a sin x + b cos x)) dx  and ∫ (1/(a cos x − bsin x)) dx  where a , b are constants.
findthegeneralsolutionto1asinx+bcosxdxand1acosxbsinxdxwherea,bareconstants.
Commented by prakash jain last updated on 10/May/20
asin x+bcos x  =(√(a^2 +b^2 ))((a/( (√(a^2 +b^2 ))))sin x+(b/( (√(a^2 +b^2 ))))cos x)  (a/( (√(a^2 +b^2 ))))=cos α  (b/( (√(a^2 +b^2 ))))=sin α  (√(a^2 +b^2 ))=(√(a^2 +b^2 ))sin (α+x)  (1/(asin x+bcos x))=(√(a^2 +b^2 ))cosec (x+α)  now use cosec formula for integration.  −−−−−−  Same procedure can be use  (1/(asin x−bcos x))
asinx+bcosx=a2+b2(aa2+b2sinx+ba2+b2cosx)aa2+b2=cosαba2+b2=sinαa2+b2=a2+b2sin(α+x)1asinx+bcosx=a2+b2cosec(x+α)nowusecosecformulaforintegration.Sameprocedurecanbeuse1asinxbcosx
Commented by Rio Michael last updated on 10/May/20
thank you sir.
thankyousir.
Commented by abdomathmax last updated on 11/May/20
I =∫  (dx/(acosx +bsinx)) we suppose a≠0  ⇒  I =(1/a)∫     (dx/(cosx +λ sinx))  =A_λ   (λ=(b/a))  changement tan((x/2))=t give  A_λ =(1/a)∫    ((2dt)/((1+t^2 )(((1−t^2 )/(1+t^2 )) +λ((2t)/(1+t^2 )))))  aA_λ =∫   ((2dt)/(1−t^2  +2λt )) =−∫  ((2dt)/(t^2 −2λt −1))  let solve t^2 −2λt −1 =0  Δ^′  =λ^2  +1  ⇒t_1 =λ+(√(1+λ^2 ))  t_2 =λ−(√(1+λ^2 ))  aA_λ =−∫   ((2dt)/((t−t_1 )(t−t_2 )))  =−(2/(2(√(1+λ^2 )))) ∫  ((1/(t−t_1 ))−(1/(t−t_2 )))dt  =(1/( (√(1+λ^2 ))))ln∣((t−t_2 )/(t−t_1 ))∣ +C  =(1/( (√(1+λ^2 ))))ln∣((t−λ +(√(1+λ^2 )))/(t−λ−(√(1+λ^2 ))))∣ +C  =(1/( (√(1+(b^2 /a^2 )))))ln∣((t−(b/a)+(√(1+(b^2 /a^2 ))))/(t−(b/a)−(√(1+(b^2 /a^2 )))))∣ +C  =((∣a∣)/( (√(a^2  +b^2 ))))ln∣((((at−b)/a)+((√(a^2  +b^2 ))/(∣a∣)))/(((at−b)/a)−((√(a^2 +b^2 ))/(∣a∣))))∣ +C  if we take a>0 we get  I =(1/( (√(a^2 +b^2 ))))ln∣((atan((x/2))−b+(√(a^2 +b^2 )))/(atan((x/2))−b−(√(a^2  +b^2 ))))∣ +C  =  =
I=dxacosx+bsinxwesupposea0I=1adxcosx+λsinx=Aλ(λ=ba)changementtan(x2)=tgiveAλ=1a2dt(1+t2)(1t21+t2+λ2t1+t2)aAλ=2dt1t2+2λt=2dtt22λt1letsolvet22λt1=0Δ=λ2+1t1=λ+1+λ2t2=λ1+λ2aAλ=2dt(tt1)(tt2)=221+λ2(1tt11tt2)dt=11+λ2lntt2tt1+C=11+λ2lntλ+1+λ2tλ1+λ2+C=11+b2a2lntba+1+b2a2tba1+b2a2+C=aa2+b2lnatba+a2+b2aatbaa2+b2a+Cifwetakea>0wegetI=1a2+b2lnatan(x2)b+a2+b2atan(x2)ba2+b2+C==
Commented by Rio Michael last updated on 11/May/20
wow sir spendid
wowsirspendid
Commented by mathmax by abdo last updated on 11/May/20
thankx
thankx

Leave a Reply

Your email address will not be published. Required fields are marked *