Question Number 113796 by aurpeyz last updated on 15/Sep/20
$$\mathrm{find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{coeeficient}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\: \\ $$$$\left(\mathrm{6}−\mathrm{4x}\right)^{−\mathrm{3}} \\ $$
Answered by mr W last updated on 15/Sep/20
$$\left(\mathrm{6}−\mathrm{4}{x}\right)^{−\mathrm{3}} =\mathrm{6}^{−\mathrm{3}} \left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{3}}{x}\right)^{−\mathrm{3}} \\ $$$$=\mathrm{6}^{−\mathrm{3}} \underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{2}} ^{{k}+\mathrm{2}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{k}} {x}^{{k}} \\ $$$${let}\:{C}_{\mathrm{2}} ^{{k}+\mathrm{2}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{k}} \geqslant{C}_{\mathrm{2}} ^{{k}+\mathrm{3}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{k}+\mathrm{1}} \\ $$$$\frac{\left({k}+\mathrm{2}\right)\left({k}+\mathrm{1}\right)}{\mathrm{2}}\geqslant\frac{\left({k}+\mathrm{3}\right)\left({k}+\mathrm{2}\right)}{\mathrm{2}}\left(\frac{\mathrm{2}}{\mathrm{3}}\right) \\ $$$$\mathrm{3}\left({k}+\mathrm{1}\right)\geqslant\mathrm{2}\left({k}+\mathrm{3}\right) \\ $$$${k}\geqslant\mathrm{3} \\ $$$${max}.\:{coef}.\:{is}\:{at}\:{k}=\mathrm{3}: \\ $$$$\mathrm{6}^{−\mathrm{3}} ×{C}_{\mathrm{2}} ^{\mathrm{5}} ×\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{3}} =\frac{\mathrm{10}}{\mathrm{729}} \\ $$
Commented by aurpeyz last updated on 16/Sep/20
$${pls}\:{explain}\:{line}\:\mathrm{2}\:{and}\:\mathrm{3}\:{in}\:{words}.\:{thanks}\:{alot} \\ $$$${sir} \\ $$
Commented by mr W last updated on 16/Sep/20
$${line}\:\mathrm{2}\:{is}\:{just}\:{binomial}\:{theorem} \\ $$
Commented by mr W last updated on 16/Sep/20
Commented by mr W last updated on 16/Sep/20
$${if}\:{A}_{{n}} \:{is}\:{the}\:{largest},\:{it}\:{means}: \\ $$$${A}_{\mathrm{1}} <{A}_{\mathrm{2}} <…<{A}_{{n}−\mathrm{1}} <{A}_{{n}} >{A}_{{n}+\mathrm{1}} >{A}_{{n}+\mathrm{2}} >… \\ $$$${i}.{e}.\:{n}\:{is}\:{the}\:{minimum}\:{of}\:{k}\:{which} \\ $$$${fulfills}\:{A}_{{k}} \geqslant{A}_{{k}+\mathrm{1}} \\ $$$${or}\:{C}_{\mathrm{2}} ^{{k}+\mathrm{2}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{k}} \geqslant{C}_{\mathrm{2}} ^{{k}+\mathrm{3}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{k}+\mathrm{1}} \\ $$$$\Rightarrow{k}\geqslant\mathrm{3} \\ $$$${it}\:{means}\:{A}_{\mathrm{3}} \:{is}\:{the}\:{largest}. \\ $$
Commented by aurpeyz last updated on 16/Sep/20
$${i}\:{understand}\:{that}\:{the}\:{general}\:{term}\:{of}\:{a} \\ $$$${binomial}\:{is}\:\underset{{r}={o}} {\overset{{n}} {\sum}}\overset{{n}} {{C}}_{{r}} {x}^{{n}−{r}} {y}^{{r}} .\:{pls}\:{explain}\:{this}\:\Rightarrow \\ $$$$\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{2}} ^{{k}+\mathrm{2}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{k}} {x}^{{k}} .\:{how}\:{you}\:{get}\:{to}\:{use}\:{k}+\mathrm{2}. \\ $$
Commented by aurpeyz last updated on 16/Sep/20
$${so}\:{i}\:{that}\:{i}\:{will}\:{be}\:{able}\:{this}\:{understanding}\:{to}\: \\ $$$${solve}\:{other}\:{problems}.\:{thanks}\:{alot} \\ $$
Commented by mr W last updated on 16/Sep/20
$${you}\:{should}\:{study}\:{the}\:{case}\:\left({x}+{y}\right)^{{n}} \\ $$$${with}\:{n}={negative}! \\ $$
Commented by aurpeyz last updated on 16/Sep/20
Commented by mr W last updated on 16/Sep/20
$${generally}\:{C}_{{r}} ^{{n}} ={C}_{{n}−{r}} ^{{n}} \\ $$$$\Rightarrow{C}_{{k}} ^{{k}+\mathrm{2}} ={C}_{\mathrm{2}} ^{{k}+\mathrm{2}} \\ $$
Commented by aurpeyz last updated on 16/Sep/20
$${wow}.\:{thanks}\:{Sir}.\:{i}\:{really}\:{appreciate}.\:{perfect} \\ $$