Question Number 116917 by I want to learn more last updated on 07/Oct/20
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{and}\:\mathrm{greatest}\:\mathrm{term}\:\mathrm{in} \\ $$$$\left(\mathrm{3x}\:\:−\:\:\mathrm{2}\right)^{−\:\mathrm{7}} . \\ $$$$ \\ $$$$\mathrm{Sir}\:\mathrm{is}\:\mathrm{it}:\:\:\:\:\:\left(−\:\mathrm{1}\right)^{−\:\mathrm{7}} .\left(\mathrm{2}\:\:−\:\:\mathrm{3x}\right)^{−\:\mathrm{7}} \:\:\:\:=\:\:\:−\:\left(\mathrm{2}\:\:−\:\:\mathrm{3x}\right)^{−\:\mathrm{7}} \\ $$$$=\:\:\:−\:\:\frac{\mathrm{8008}\:\:×\:\:\mathrm{2}^{\mathrm{10}} }{\mathrm{3}^{\mathrm{17}} } \\ $$
Answered by mr W last updated on 08/Oct/20
$$\left(\mathrm{3}{x}−\mathrm{2}\right)^{−\mathrm{7}} \\ $$$$=−\mathrm{2}^{−\mathrm{7}} \left(\mathrm{1}−\frac{\mathrm{3}{x}}{\mathrm{2}}\right)^{−\mathrm{7}} \\ $$$$=−\mathrm{2}^{−\mathrm{7}} \underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{6}} ^{{k}+\mathrm{6}} \left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{{k}} {x}^{{k}} \\ $$$${a}_{{k}} =−\mathrm{2}^{−\mathrm{7}} {C}_{\mathrm{6}} ^{{k}+\mathrm{6}} \left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{{k}} \\ $$$${all}\:{terms}\:{have}\:{negative}\:{coefficients}, \\ $$$${which}\:{are}\:{decreasing},\:{i}.{e}. \\ $$$${a}_{\mathrm{0}} >{a}_{\mathrm{1}} >{a}_{\mathrm{2}} >…. \\ $$$${the}\:{greatest}\:{is}\:{a}_{\mathrm{0}} =−\mathrm{2}^{−\mathrm{7}} =−\frac{\mathrm{1}}{\mathrm{128}} \\ $$
Commented by I want to learn more last updated on 08/Oct/20
$$\mathrm{Ohh},\:\mathrm{i}\:\mathrm{get}\:\mathrm{sir},\:\mathrm{this}\:\mathrm{makes}\:\mathrm{it}\:\mathrm{different}\:\mathrm{from}\:\:\:\left(\mathrm{2}\:\:−\:\:\mathrm{3x}\right)^{−\:\mathrm{7}} \:\:\mathrm{which}\:\mathrm{is}\:\:\:\frac{\mathrm{8008}\:\:×\:\:\mathrm{2}^{\mathrm{10}} }{\mathrm{3}^{\mathrm{17}} }. \\ $$$$\mathrm{Thanks}\:\mathrm{sir},\:\:\mathrm{understand}. \\ $$
Commented by mr W last updated on 08/Oct/20
$${C}_{\mathrm{6}} ^{{k}+\mathrm{6}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{k}} \:{has}\:{a}\:{maximum}. \\ $$$${C}_{\mathrm{6}} ^{{k}+\mathrm{6}} \left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{{k}} \:{has}\:{no}\:{maximum}. \\ $$
Commented by I want to learn more last updated on 08/Oct/20
$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{sir}. \\ $$