Menu Close

Find-the-greatest-coefficient-in-expansion-of-6-4x-3-




Question Number 178937 by Tawa11 last updated on 22/Oct/22
Find the greatest coefficient in expansion of:    (6   −   4x)^(−  3)
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{in}\:\mathrm{expansion}\:\mathrm{of}:\:\:\:\:\left(\mathrm{6}\:\:\:−\:\:\:\mathrm{4x}\right)^{−\:\:\mathrm{3}} \\ $$
Answered by mr W last updated on 23/Oct/22
(6−4x)^(−3)   =6^(−3) (1−((2x)/3))^(−3)   =6^(−3) Σ_(k=0) ^∞ C_2 ^(k+2) ((2/3))^k x^k   a_k =6^(−3) ((2/3))^k C_2 ^(k+2) =((2^(k−4) (k+2)(k+1))/3^(k+3) )  a_(k+1) =((2^(k−3) (k+3)(k+2))/3^(k+4) )  a_k >a_(k+1)   ((2^(k−4) (k+2)(k+1))/3^(k+3) )>((2^(k−3) (k+3)(k+2))/3^(k+4) )  (((k+1))/1)>((2(k+3))/3)  ⇒k>3  ⇒a_4  is maximum!  a_(max) =a_4 =((2^(4−4) (4+2)(4+1))/3^(4+3) )=((10)/(729)) ✓
$$\left(\mathrm{6}−\mathrm{4}{x}\right)^{−\mathrm{3}} \\ $$$$=\mathrm{6}^{−\mathrm{3}} \left(\mathrm{1}−\frac{\mathrm{2}{x}}{\mathrm{3}}\right)^{−\mathrm{3}} \\ $$$$=\mathrm{6}^{−\mathrm{3}} \underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{2}} ^{{k}+\mathrm{2}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{k}} {x}^{{k}} \\ $$$${a}_{{k}} =\mathrm{6}^{−\mathrm{3}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{k}} {C}_{\mathrm{2}} ^{{k}+\mathrm{2}} =\frac{\mathrm{2}^{{k}−\mathrm{4}} \left({k}+\mathrm{2}\right)\left({k}+\mathrm{1}\right)}{\mathrm{3}^{{k}+\mathrm{3}} } \\ $$$${a}_{{k}+\mathrm{1}} =\frac{\mathrm{2}^{{k}−\mathrm{3}} \left({k}+\mathrm{3}\right)\left({k}+\mathrm{2}\right)}{\mathrm{3}^{{k}+\mathrm{4}} } \\ $$$${a}_{{k}} >{a}_{{k}+\mathrm{1}} \\ $$$$\frac{\mathrm{2}^{{k}−\mathrm{4}} \left({k}+\mathrm{2}\right)\left({k}+\mathrm{1}\right)}{\mathrm{3}^{{k}+\mathrm{3}} }>\frac{\mathrm{2}^{{k}−\mathrm{3}} \left({k}+\mathrm{3}\right)\left({k}+\mathrm{2}\right)}{\mathrm{3}^{{k}+\mathrm{4}} } \\ $$$$\frac{\left({k}+\mathrm{1}\right)}{\mathrm{1}}>\frac{\mathrm{2}\left({k}+\mathrm{3}\right)}{\mathrm{3}} \\ $$$$\Rightarrow{k}>\mathrm{3} \\ $$$$\Rightarrow{a}_{\mathrm{4}} \:{is}\:{maximum}! \\ $$$${a}_{{max}} ={a}_{\mathrm{4}} =\frac{\mathrm{2}^{\mathrm{4}−\mathrm{4}} \left(\mathrm{4}+\mathrm{2}\right)\left(\mathrm{4}+\mathrm{1}\right)}{\mathrm{3}^{\mathrm{4}+\mathrm{3}} }=\frac{\mathrm{10}}{\mathrm{729}}\:\checkmark \\ $$
Commented by Tawa11 last updated on 23/Oct/22
Great, God bless you sir. I appreciare.
$$\mathrm{Great},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciare}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *