Question Number 91464 by I want to learn more last updated on 30/Apr/20
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\:\left(\mathrm{3}\:\:−\:\:\mathrm{2x}\right)^{−\mathrm{7}} \\ $$
Commented by mr W last updated on 01/May/20
$$\left(\mathrm{3}−\mathrm{2}{x}\right)^{−\mathrm{7}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{7}} }\left(\mathrm{1}−\frac{\mathrm{2}{x}}{\mathrm{3}}\right)^{−\mathrm{7}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{7}} }\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{6}} ^{{n}+\mathrm{6}} \left(\frac{\mathrm{2}{x}}{\mathrm{3}}\right)^{{n}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{7}} }\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{6}} ^{{n}+\mathrm{6}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{n}} {x}^{{n}} \\ $$$${the}\:{greatest}\:{coef}.\:{is}\:{if}\:{a}_{{n}} ={C}_{\mathrm{6}} ^{{n}+\mathrm{6}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{n}} \:{is} \\ $$$${maximum},\:{i}.{e}.\:{the}\:{maximal}\:{n}\:{which} \\ $$$${fulfills}\:{a}_{{n}+\mathrm{1}} >{a}_{{n}} . \\ $$$${C}_{\mathrm{6}} ^{{n}+\mathrm{1}+\mathrm{6}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{n}+\mathrm{1}} >{C}_{\mathrm{6}} ^{{n}+\mathrm{6}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{n}} \\ $$$$\frac{\mathrm{2}}{\mathrm{3}}{C}_{\mathrm{6}} ^{{n}+\mathrm{7}} >{C}_{\mathrm{6}} ^{{n}+\mathrm{6}} \\ $$$$\frac{\mathrm{2}×\left({n}+\mathrm{7}\right)!}{\mathrm{3}×\mathrm{6}!×\left({n}+\mathrm{1}\right)!}>\frac{\left({n}+\mathrm{6}\right)!}{\mathrm{6}!{n}!} \\ $$$$\frac{\mathrm{2}\left({n}+\mathrm{7}\right)}{\mathrm{3}\left({n}+\mathrm{1}\right)}>\mathrm{1} \\ $$$${n}<\mathrm{11} \\ $$$${i}.{e}.\:{the}\:{coef}.\:{of}\:{x}^{\mathrm{10}} \:{is}\:{the}\:{greatest} \\ $$$${which}\:{is} \\ $$$$\mathrm{3}^{−\mathrm{7}} ×{C}_{\mathrm{6}} ^{\mathrm{10}+\mathrm{6}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{10}} \\ $$$$=\frac{\mathrm{2}^{\mathrm{10}} }{\mathrm{3}^{\mathrm{17}} }×\frac{\mathrm{16}×\mathrm{15}×\mathrm{14}×\mathrm{13}×\mathrm{12}×\mathrm{11}}{\mathrm{6}!} \\ $$$$=\frac{\mathrm{8008}×\mathrm{2}^{\mathrm{10}} }{\mathrm{3}^{\mathrm{17}} } \\ $$
Commented by I want to learn more last updated on 01/May/20
$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir} \\ $$
Commented by I want to learn more last updated on 01/May/20
$$\mathrm{Sir},\:\mathrm{where}\:\mathrm{can}\:\mathrm{i}\:\mathrm{read}\:\mathrm{more}\:\mathrm{on}\:\mathrm{this}.\:\mathrm{Online}.\:\mathrm{Please}\:\mathrm{share}\:\mathrm{me}\:\mathrm{link}. \\ $$$$\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{know}\:\mathrm{the}\:\mathrm{principle}.\:\mathrm{Thanks}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 01/May/20
$${search}\:{for}\:“{binomial}\:{theorem}''\:{in} \\ $$$${google}.\:{maybe}\:{you}\:{already}\:{know}\:{all} \\ $$$${these}\:{things}.\:{you}\:{only}\:{need}\:{to}\:{apply}. \\ $$
Commented by mr W last updated on 01/May/20
Commented by I want to learn more last updated on 01/May/20
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$$$\mathrm{Sir},\:\mathrm{i}\:\mathrm{can}\:\mathrm{be}\:\mathrm{using}\:\mathrm{the}\:\mathrm{same}\:\mathrm{approach}\:\mathrm{you}\:\mathrm{used}\:\mathrm{for}\:\mathrm{such}\:\mathrm{question} \\ $$$$\mathrm{always}? \\ $$
Commented by mr W last updated on 01/May/20
$${i}\:{can}'{t}\:{answer}\:{such}\:{a}\:{general}\:{question} \\ $$$${of}\:{you}!\:{it}\:{depents}\:{very}\:{much}\:{on}\:{what} \\ $$$${the}\:{problem}\:{is}. \\ $$
Commented by I want to learn more last updated on 01/May/20
$$\underset{\mathrm{n}\:\:=\:\:\mathrm{0}} {\overset{\infty} {\sum}}\:\:\overset{\mathrm{s}\:\:+\:\:\mathrm{n}\:\:−\:\:\mathrm{1}} {\:}\mathrm{C}_{\mathrm{n}} \:\mathrm{x}^{\mathrm{n}} \\ $$$$\left(\mathrm{1}\:−\:\frac{\mathrm{2x}}{\mathrm{3}}\right)^{−\mathrm{7}} \:\:\:\:\:\:\:=\:\:\:\underset{\mathrm{n}\:\:=\:\:\mathrm{0}} {\overset{\infty} {\sum}}\:\:\:\:\overset{\:\mathrm{7}\:\:+\:\:\mathrm{n}\:\:−\:\:\mathrm{1}} {\:}\mathrm{C}_{\mathrm{6}\:\:….\:\boldsymbol{\mathrm{Why}}\:\boldsymbol{\mathrm{do}}\:\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{have}}\:\mathrm{6}\:\boldsymbol{\mathrm{here}}\:\boldsymbol{\mathrm{sir}}} \\ $$
Commented by I want to learn more last updated on 01/May/20
$$\mathrm{I}\:\mathrm{mean}\:\mathrm{binomial}\:\mathrm{of}\:\mathrm{negative}\:\mathrm{index}\:? \\ $$
Commented by I want to learn more last updated on 01/May/20
$$\mathrm{Or}\:\mathrm{because}\:\:\:\:\:\overset{\mathrm{n}\:\:+\:\:\mathrm{6}} {\:}\mathrm{C}_{\mathrm{6}} \\ $$$$\mathrm{So}\:\:\:\:\:\:\:\:\overset{\mathrm{n}\:\:+\:\:\mathrm{8}} {\:}\mathrm{C}_{\mathrm{8}} \:? \\ $$
Commented by mr W last updated on 01/May/20
$${generally} \\ $$$${C}_{{r}} ^{{n}} ={C}_{{n}−{r}} ^{{n}} \\ $$$${you}\:{know}\:{this}\:{already},\:{i}\:{think}.\:{then} \\ $$$${just}\:{apply}\:{this}: \\ $$$$\overset{\mathrm{s}+\mathrm{n}−\mathrm{1}} {\:}\mathrm{C}_{\mathrm{n}} =\overset{\mathrm{s}+\mathrm{n}−\mathrm{1}} {\:}\mathrm{C}_{\left({s}+{n}−\mathrm{1}\right)−\mathrm{n}} =\overset{\mathrm{n}+{s}−\mathrm{1}} {\:}\mathrm{C}_{{s}−\mathrm{1}} \\ $$
Commented by I want to learn more last updated on 01/May/20
$$\mathrm{Yes}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{understand}\:\mathrm{now}.\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$