Menu Close

Find-the-greatest-coefficient-in-the-expansion-of-3-2x-7-




Question Number 91464 by I want to learn more last updated on 30/Apr/20
Find the greatest coefficient in the expansion of         (3  −  2x)^(−7)
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\:\left(\mathrm{3}\:\:−\:\:\mathrm{2x}\right)^{−\mathrm{7}} \\ $$
Commented by mr W last updated on 01/May/20
(3−2x)^(−7)   =(1/3^7 )(1−((2x)/3))^(−7)   =(1/3^7 )Σ_(n=0) ^∞ C_6 ^(n+6) (((2x)/3))^n   =(1/3^7 )Σ_(n=0) ^∞ C_6 ^(n+6) ((2/3))^n x^n   the greatest coef. is if a_n =C_6 ^(n+6) ((2/3))^n  is  maximum, i.e. the maximal n which  fulfills a_(n+1) >a_n .  C_6 ^(n+1+6) ((2/3))^(n+1) >C_6 ^(n+6) ((2/3))^n   (2/3)C_6 ^(n+7) >C_6 ^(n+6)   ((2×(n+7)!)/(3×6!×(n+1)!))>(((n+6)!)/(6!n!))  ((2(n+7))/(3(n+1)))>1  n<11  i.e. the coef. of x^(10)  is the greatest  which is  3^(−7) ×C_6 ^(10+6) ((2/3))^(10)   =(2^(10) /3^(17) )×((16×15×14×13×12×11)/(6!))  =((8008×2^(10) )/3^(17) )
$$\left(\mathrm{3}−\mathrm{2}{x}\right)^{−\mathrm{7}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{7}} }\left(\mathrm{1}−\frac{\mathrm{2}{x}}{\mathrm{3}}\right)^{−\mathrm{7}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{7}} }\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{6}} ^{{n}+\mathrm{6}} \left(\frac{\mathrm{2}{x}}{\mathrm{3}}\right)^{{n}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{7}} }\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{C}_{\mathrm{6}} ^{{n}+\mathrm{6}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{n}} {x}^{{n}} \\ $$$${the}\:{greatest}\:{coef}.\:{is}\:{if}\:{a}_{{n}} ={C}_{\mathrm{6}} ^{{n}+\mathrm{6}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{n}} \:{is} \\ $$$${maximum},\:{i}.{e}.\:{the}\:{maximal}\:{n}\:{which} \\ $$$${fulfills}\:{a}_{{n}+\mathrm{1}} >{a}_{{n}} . \\ $$$${C}_{\mathrm{6}} ^{{n}+\mathrm{1}+\mathrm{6}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{n}+\mathrm{1}} >{C}_{\mathrm{6}} ^{{n}+\mathrm{6}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{{n}} \\ $$$$\frac{\mathrm{2}}{\mathrm{3}}{C}_{\mathrm{6}} ^{{n}+\mathrm{7}} >{C}_{\mathrm{6}} ^{{n}+\mathrm{6}} \\ $$$$\frac{\mathrm{2}×\left({n}+\mathrm{7}\right)!}{\mathrm{3}×\mathrm{6}!×\left({n}+\mathrm{1}\right)!}>\frac{\left({n}+\mathrm{6}\right)!}{\mathrm{6}!{n}!} \\ $$$$\frac{\mathrm{2}\left({n}+\mathrm{7}\right)}{\mathrm{3}\left({n}+\mathrm{1}\right)}>\mathrm{1} \\ $$$${n}<\mathrm{11} \\ $$$${i}.{e}.\:{the}\:{coef}.\:{of}\:{x}^{\mathrm{10}} \:{is}\:{the}\:{greatest} \\ $$$${which}\:{is} \\ $$$$\mathrm{3}^{−\mathrm{7}} ×{C}_{\mathrm{6}} ^{\mathrm{10}+\mathrm{6}} \left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{10}} \\ $$$$=\frac{\mathrm{2}^{\mathrm{10}} }{\mathrm{3}^{\mathrm{17}} }×\frac{\mathrm{16}×\mathrm{15}×\mathrm{14}×\mathrm{13}×\mathrm{12}×\mathrm{11}}{\mathrm{6}!} \\ $$$$=\frac{\mathrm{8008}×\mathrm{2}^{\mathrm{10}} }{\mathrm{3}^{\mathrm{17}} } \\ $$
Commented by I want to learn more last updated on 01/May/20
I really appreciate sir
$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir} \\ $$
Commented by I want to learn more last updated on 01/May/20
Sir, where can i read more on this. Online. Please share me link.  I want to know the principle. Thanks sir
$$\mathrm{Sir},\:\mathrm{where}\:\mathrm{can}\:\mathrm{i}\:\mathrm{read}\:\mathrm{more}\:\mathrm{on}\:\mathrm{this}.\:\mathrm{Online}.\:\mathrm{Please}\:\mathrm{share}\:\mathrm{me}\:\mathrm{link}. \\ $$$$\mathrm{I}\:\mathrm{want}\:\mathrm{to}\:\mathrm{know}\:\mathrm{the}\:\mathrm{principle}.\:\mathrm{Thanks}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 01/May/20
search for “binomial theorem” in  google. maybe you already know all  these things. you only need to apply.
$${search}\:{for}\:“{binomial}\:{theorem}''\:{in} \\ $$$${google}.\:{maybe}\:{you}\:{already}\:{know}\:{all} \\ $$$${these}\:{things}.\:{you}\:{only}\:{need}\:{to}\:{apply}. \\ $$
Commented by mr W last updated on 01/May/20
Commented by I want to learn more last updated on 01/May/20
Thanks sir. I appreciate.  Sir, i can be using the same approach you used for such question  always?
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}. \\ $$$$\mathrm{Sir},\:\mathrm{i}\:\mathrm{can}\:\mathrm{be}\:\mathrm{using}\:\mathrm{the}\:\mathrm{same}\:\mathrm{approach}\:\mathrm{you}\:\mathrm{used}\:\mathrm{for}\:\mathrm{such}\:\mathrm{question} \\ $$$$\mathrm{always}? \\ $$
Commented by mr W last updated on 01/May/20
i can′t answer such a general question  of you! it depents very much on what  the problem is.
$${i}\:{can}'{t}\:{answer}\:{such}\:{a}\:{general}\:{question} \\ $$$${of}\:{you}!\:{it}\:{depents}\:{very}\:{much}\:{on}\:{what} \\ $$$${the}\:{problem}\:{is}. \\ $$
Commented by I want to learn more last updated on 01/May/20
Σ_(n  =  0) ^∞    ^(s  +  n  −  1) C_n  x^n   (1 − ((2x)/3))^(−7)        =   Σ_(n  =  0) ^∞      ^( 7  +  n  −  1) C_(6  .... Why do we have 6 here sir)
$$\underset{\mathrm{n}\:\:=\:\:\mathrm{0}} {\overset{\infty} {\sum}}\:\:\overset{\mathrm{s}\:\:+\:\:\mathrm{n}\:\:−\:\:\mathrm{1}} {\:}\mathrm{C}_{\mathrm{n}} \:\mathrm{x}^{\mathrm{n}} \\ $$$$\left(\mathrm{1}\:−\:\frac{\mathrm{2x}}{\mathrm{3}}\right)^{−\mathrm{7}} \:\:\:\:\:\:\:=\:\:\:\underset{\mathrm{n}\:\:=\:\:\mathrm{0}} {\overset{\infty} {\sum}}\:\:\:\:\overset{\:\mathrm{7}\:\:+\:\:\mathrm{n}\:\:−\:\:\mathrm{1}} {\:}\mathrm{C}_{\mathrm{6}\:\:….\:\boldsymbol{\mathrm{Why}}\:\boldsymbol{\mathrm{do}}\:\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{have}}\:\mathrm{6}\:\boldsymbol{\mathrm{here}}\:\boldsymbol{\mathrm{sir}}} \\ $$
Commented by I want to learn more last updated on 01/May/20
I mean binomial of negative index ?
$$\mathrm{I}\:\mathrm{mean}\:\mathrm{binomial}\:\mathrm{of}\:\mathrm{negative}\:\mathrm{index}\:? \\ $$
Commented by I want to learn more last updated on 01/May/20
Or because      ^(n  +  6) C_6   So         ^(n  +  8) C_8  ?
$$\mathrm{Or}\:\mathrm{because}\:\:\:\:\:\overset{\mathrm{n}\:\:+\:\:\mathrm{6}} {\:}\mathrm{C}_{\mathrm{6}} \\ $$$$\mathrm{So}\:\:\:\:\:\:\:\:\overset{\mathrm{n}\:\:+\:\:\mathrm{8}} {\:}\mathrm{C}_{\mathrm{8}} \:? \\ $$
Commented by mr W last updated on 01/May/20
generally  C_r ^n =C_(n−r) ^n   you know this already, i think. then  just apply this:   ^(s+n−1) C_n = ^(s+n−1) C_((s+n−1)−n) = ^(n+s−1) C_(s−1)
$${generally} \\ $$$${C}_{{r}} ^{{n}} ={C}_{{n}−{r}} ^{{n}} \\ $$$${you}\:{know}\:{this}\:{already},\:{i}\:{think}.\:{then} \\ $$$${just}\:{apply}\:{this}: \\ $$$$\overset{\mathrm{s}+\mathrm{n}−\mathrm{1}} {\:}\mathrm{C}_{\mathrm{n}} =\overset{\mathrm{s}+\mathrm{n}−\mathrm{1}} {\:}\mathrm{C}_{\left({s}+{n}−\mathrm{1}\right)−\mathrm{n}} =\overset{\mathrm{n}+{s}−\mathrm{1}} {\:}\mathrm{C}_{{s}−\mathrm{1}} \\ $$
Commented by I want to learn more last updated on 01/May/20
Yes sir, i understand now. I really appreciate.
$$\mathrm{Yes}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{understand}\:\mathrm{now}.\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *