Menu Close

Find-the-greatest-common-divisor-of-1122-and-1001-and-express-the-greatest-common-divisor-d-in-the-form-d-1122x-1001y-Using-the-above-result-solve-the-congruence-equation-37x-11-mod-33-




Question Number 107594 by Rio Michael last updated on 11/Aug/20
Find the greatest common divisor of 1122 and 1001 and   express the greatest common divisor d in the form.    d = 1122x + 1001y  Using the above result solve the congruence equation   37x ≡ 11 (mod 33)
Findthegreatestcommondivisorof1122and1001andexpressthegreatestcommondivisordintheform.d=1122x+1001yUsingtheaboveresultsolvethecongruenceequation37x11(mod33)
Answered by 1549442205PVT last updated on 11/Aug/20
37x−11=33y⇔y=((37x−11)/(33))=x+((4x−11)/(33))  Set ((4x−11)/(33))=t(t∈Z)⇒4x−11=33t  ⇔x=((33t+11)/4)=8t+3+((t−1)/4).Set ((t−1)/4)=k  ⇒t=4k+1(k∈Z)we get       { ((x=33k+11)),((y=37k+12)) :}(k∈Z)
37x11=33yy=37x1133=x+4x1133Set4x1133=t(tZ)4x11=33tx=33t+114=8t+3+t14.Sett14=kt=4k+1(kZ)weget{x=33k+11y=37k+12(kZ)
Answered by Aziztisffola last updated on 11/Aug/20
we have gcd(1122;1001)=11=d  1122x + 1001y=11  and 37x ≡ 11 (mod 33) ⇔ ∃k∈Z  37x−33k=11  ⇒37x−33k=11=1122x + 1001y   Using Gauss theorem we get  x=33k+11
wehavegcd(1122;1001)=11=d1122x+1001y=11and37x11(mod33)kZ37x33k=1137x33k=11=1122x+1001yUsingGausstheoremwegetx=33k+11

Leave a Reply

Your email address will not be published. Required fields are marked *