Question Number 157836 by zakirullah last updated on 28/Oct/21
$${find}\:{the}\:{indicated}\:{higher}\:{order}\:{derivative} \\ $$$${of}\:{the}\:{following}\:{function} \\ $$$${f}\left({x}\right)\:=\:\left({x}^{\mathrm{3}} +\mathrm{4}{x}−\mathrm{5}\right)^{\mathrm{4}} ,\:{f}\left({x}\right)^{{iv}} \\ $$
Answered by tounghoungko last updated on 29/Oct/21
$${f}\left({x}\right)=\left({x}−\mathrm{1}\right)^{\mathrm{4}} \left({x}^{\mathrm{2}} +{x}+\mathrm{5}\right)^{\mathrm{4}} \\ $$$$\frac{{d}^{\mathrm{4}} {y}}{{dx}^{\mathrm{4}} }\:=\:\frac{{d}^{\mathrm{4}} }{{dx}^{\mathrm{4}} }\left(\left({x}−\mathrm{1}\right)^{\mathrm{4}} \right)\left({x}^{\mathrm{2}} +{x}+\mathrm{5}\right)^{\mathrm{4}} +\mathrm{4}\frac{{d}^{\mathrm{3}} }{{dx}^{\mathrm{3}} }\left(\left({x}−\mathrm{1}\right)\right)^{\mathrm{4}} .\frac{{d}}{{dx}}\left({x}^{\mathrm{2}} +{x}+\mathrm{5}\right)^{\mathrm{4}} \\ $$$$\:\:\:\:\:\:+\:\mathrm{6}\:\frac{{d}^{\mathrm{2}} }{{dx}^{\mathrm{2}} }\left(\left({x}−\mathrm{1}\right)\right)^{\mathrm{4}} \:\frac{{d}^{\mathrm{2}} }{{dx}^{\mathrm{2}} }\left({x}^{\mathrm{2}} +{x}+\mathrm{5}\right)^{\mathrm{4}} +\mathrm{4}\frac{{d}}{{dx}}\left(\left({x}−\mathrm{1}\right)\right)^{\mathrm{4}} \frac{{d}^{\mathrm{3}} }{{dx}^{\mathrm{3}} }\left({x}^{\mathrm{2}} +{x}+\mathrm{5}\right)^{\mathrm{4}} \\ $$$$\:\:\:\:\:\:+\:\mathrm{4}\left({x}−\mathrm{1}\right)^{\mathrm{4}} \frac{{d}^{\mathrm{4}} }{{dx}^{\mathrm{4}} }\left({x}^{\mathrm{2}} +{x}+\mathrm{5}\right)^{\mathrm{4}} \\ $$$$=\:\mathrm{24}\left({x}^{\mathrm{2}} +{x}+\mathrm{5}\right)^{\mathrm{4}} +\mathrm{96}\left({x}−\mathrm{1}\right)\frac{{d}}{{dx}}\left({x}^{\mathrm{2}} +{x}+\mathrm{5}\right)^{\mathrm{4}} +\mathrm{72}\left({x}−\mathrm{1}\right)^{\mathrm{2}} \frac{{d}^{\mathrm{2}} }{{dx}^{\mathrm{2}} }\left({x}^{\mathrm{2}} +{x}+\mathrm{5}\right)^{\mathrm{4}} \\ $$$$\:+\:\mathrm{16}\left({x}−\mathrm{1}\right)^{\mathrm{3}} \:\frac{{d}^{\mathrm{3}} }{{dx}^{\mathrm{3}} }\left({x}^{\mathrm{2}} +{x}+\mathrm{5}\right)^{\mathrm{4}} +\mathrm{4}\left({x}−\mathrm{1}\right)^{\mathrm{4}} \:\frac{{d}^{\mathrm{4}} }{{dx}^{\mathrm{4}} }\left({x}^{\mathrm{2}} +{x}+\mathrm{5}\right)^{\mathrm{4}} \\ $$
Commented by zakirullah last updated on 03/Nov/21
$${welldone}\:{sir}\:{G} \\ $$