Menu Close

find-the-indicated-higher-order-derivative-of-the-following-function-f-x-x-3-4x-5-4-f-x-iv-




Question Number 157836 by zakirullah last updated on 28/Oct/21
find the indicated higher order derivative  of the following function  f(x) = (x^3 +4x−5)^4 , f(x)^(iv)
findtheindicatedhigherorderderivativeofthefollowingfunctionf(x)=(x3+4x5)4,f(x)iv
Answered by tounghoungko last updated on 29/Oct/21
f(x)=(x−1)^4 (x^2 +x+5)^4   (d^4 y/dx^4 ) = (d^4 /dx^4 )((x−1)^4 )(x^2 +x+5)^4 +4(d^3 /dx^3 )((x−1))^4 .(d/dx)(x^2 +x+5)^4         + 6 (d^2 /dx^2 )((x−1))^4  (d^2 /dx^2 )(x^2 +x+5)^4 +4(d/dx)((x−1))^4 (d^3 /dx^3 )(x^2 +x+5)^4         + 4(x−1)^4 (d^4 /dx^4 )(x^2 +x+5)^4   = 24(x^2 +x+5)^4 +96(x−1)(d/dx)(x^2 +x+5)^4 +72(x−1)^2 (d^2 /dx^2 )(x^2 +x+5)^4    + 16(x−1)^3  (d^3 /dx^3 )(x^2 +x+5)^4 +4(x−1)^4  (d^4 /dx^4 )(x^2 +x+5)^4
f(x)=(x1)4(x2+x+5)4d4ydx4=d4dx4((x1)4)(x2+x+5)4+4d3dx3((x1))4.ddx(x2+x+5)4+6d2dx2((x1))4d2dx2(x2+x+5)4+4ddx((x1))4d3dx3(x2+x+5)4+4(x1)4d4dx4(x2+x+5)4=24(x2+x+5)4+96(x1)ddx(x2+x+5)4+72(x1)2d2dx2(x2+x+5)4+16(x1)3d3dx3(x2+x+5)4+4(x1)4d4dx4(x2+x+5)4
Commented by zakirullah last updated on 03/Nov/21
welldone sir G
welldonesirG

Leave a Reply

Your email address will not be published. Required fields are marked *