Menu Close

Find-the-infinite-sum-n-1-1-2n-1-2n-1-2n-3-




Question Number 90787 by Maclaurin Stickker last updated on 26/Apr/20
Find the infinite sum  Σ_(n=1) ^∞ (1/((2n−1)(2n+1)(2n+3)))
Findtheinfinitesumn=11(2n1)(2n+1)(2n+3)
Commented by mathmax by abdo last updated on 26/Apr/20
let decompose F(x)=(1/((2x−1)(2x+1)(2x+3)))  F(x)=(a/(2x−1)) +(b/(2x+1)) +(c/(2x+3))  a =(2x−1)F(x)∣_(x=(1/2))    =(1/((2)(4))) =(1/8)  b =(2x+1)F(x)∣_(x=−(1/2))    =(1/((−2)(2)))=−(1/4)  c =(2x+3)F(x)∣_(x=−(3/2))    =(1/((−4)(−2))) =(1/8) ⇒  F(x)=(1/(8(2x−1)))−(1/(4(2x+1)))+(1/(8(2x+3))) let  S_n =Σ_(k=1) ^(n )   (1/((2k−1)(2k+1)(2k+3))) ⇒S_n =ΣF(k)  =(1/8)Σ_(k=1) ^n  (1/(2k−1)) −(1/4)Σ_(k=1) ^n  (1/(2k+1)) +(1/8)Σ_(k=1) ^n  (1/(2k+3))  we have  Σ_(k=1) ^n  (1/(2k−1)) =1 +(1/3)+(1/5)+....+(1/(2n−1))  =1+(1/2)+(1/3)+...+(1/(2n−1))+(1/(2n))−(1/2)−(1/4)−....−(1/(2n))  =H_(2n) −(1/2)H_n   Σ_(k=1) ^n  (1/(2k+1)) =_(k=j−1)    Σ_(j=2) ^(n+1)  (1/(2j−1)) =Σ_(j=1) ^(n+1)  (1/(2j−1))−1  =H_(2n+2) −(1/2)H_(n+1) −1  Σ_(k=1) ^n  (1/(2k+3)) =_(k=j−2)    Σ_(j=3) ^(n+2)  (1/(2j−1)) =Σ_(j=1) ^(n+2)  (1/(2j−1))−1−(1/3)  =H_(2n+4) −(1/2)H_(n+2) −(4/3) ⇒  8S_n =H_(2n) −(1/2)H_n −2(H_(2n+2) −(1/2)H_(n+1) −1)+H_(2n+4) −(1/2)H_(n+2) −(4/3)  =H_(2n) −(1/2)H_n −2H_(2n+2)  +H_(n+1) +2 +H_(2n+4) −(1/2)H_(n+2) −(4/3)  ∼ln(2n)+γ −(1/2)ln(n)−(γ/2) −2ln(2n+2)−2γ +ln(n+1)+γ  +ln(2n+4)+γ −(1/2)ln(n+2)−(γ/2)  +(2/3) ⇒  8S_n ∼  ln(2)+ln(n)−(1/2)ln(n)−2ln(2)−2ln(n)+ln(n)  +ln(2)+ln(n)−(1/2)ln(n) +(2/3) ⇒8S_n ∼(2/3) ⇒S_n ∼(1/(12))  ⇒lim_(n→+∞)  S_n =(1/(12))
letdecomposeF(x)=1(2x1)(2x+1)(2x+3)F(x)=a2x1+b2x+1+c2x+3a=(2x1)F(x)x=12=1(2)(4)=18b=(2x+1)F(x)x=12=1(2)(2)=14c=(2x+3)F(x)x=32=1(4)(2)=18F(x)=18(2x1)14(2x+1)+18(2x+3)letSn=k=1n1(2k1)(2k+1)(2k+3)Sn=ΣF(k)=18k=1n12k114k=1n12k+1+18k=1n12k+3wehavek=1n12k1=1+13+15+.+12n1=1+12+13++12n1+12n1214.12n=H2n12Hnk=1n12k+1=k=j1j=2n+112j1=j=1n+112j11=H2n+212Hn+11k=1n12k+3=k=j2j=3n+212j1=j=1n+212j1113=H2n+412Hn+2438Sn=H2n12Hn2(H2n+212Hn+11)+H2n+412Hn+243=H2n12Hn2H2n+2+Hn+1+2+H2n+412Hn+243ln(2n)+γ12ln(n)γ22ln(2n+2)2γ+ln(n+1)+γ+ln(2n+4)+γ12ln(n+2)γ2+238Snln(2)+ln(n)12ln(n)2ln(2)2ln(n)+ln(n)+ln(2)+ln(n)12ln(n)+238Sn23Sn112limn+Sn=112
Commented by Maclaurin Stickker last updated on 26/Apr/20
Thank you, I appreciate your work.
Thankyou,Iappreciateyourwork.
Commented by abdomathmax last updated on 27/Apr/20
you are welcome
youarewelcome
Answered by ajfour last updated on 26/Apr/20
S=(1/4)Σ(((2n+3)−(2n−1))/((2n−1)(2n+1)(2n+3)))   =(1/4)Σ(1/((2n−1)(2n+1)))−(1/4)Σ(1/((2n+1)(2n+3)))   =(1/8)Σ(1/(2n−1))−(1/8)Σ(1/(2n+1))−(1/8)Σ(1/(2n+1))+(1/8)Σ(1/(2n+3))  8S=((1/1)+(1/3)+(1/5)+(1/7)+...)−2((1/3)+(1/5)+(1/7)+...)+((1/5)+(1/7)+...)      =1−(1/3) =(2/3)  ⇒   S=(1/(12)) .  (any chance this may be correct?)
S=14Σ(2n+3)(2n1)(2n1)(2n+1)(2n+3)=14Σ1(2n1)(2n+1)14Σ1(2n+1)(2n+3)=18Σ12n118Σ12n+118Σ12n+1+18Σ12n+38S=(11+13+15+17+)2(13+15+17+)+(15+17+)=113=23S=112.(anychancethismaybecorrect?)
Commented by mathmax by abdo last updated on 26/Apr/20
correct sir ajfour
correctsirajfour
Commented by Maclaurin Stickker last updated on 26/Apr/20
Perfect!
Perfect!

Leave a Reply

Your email address will not be published. Required fields are marked *