Menu Close

find-the-laplace-transform-of-f-t-ln-t-




Question Number 177493 by ali009 last updated on 06/Oct/22
find the laplace transform of  f(t)=ln(t)
findthelaplacetransformoff(t)=ln(t)
Commented by JDamian last updated on 06/Oct/22
Is it suitable for Laplace Transform?
Commented by ali009 last updated on 06/Oct/22
yes i will put my solution later
yesiwillputmysolutionlater
Answered by ali009 last updated on 06/Oct/22
in general L[t^v ln(t)]=∫_0 ^∞ t^v ln(t)e^(−st) dt  let x=st dx=sdt  L[t^v ln(t)]=(1/s)∫_0 ^∞ e^(−x) ((x/s))^v ln((x/s))dx  =(1/s^(v+1) )∫_0 ^∞ e^(−x) x^v (ln(x)−ln(s))dx  =(1/s^(v+1) )(∫_0 ^∞ e^(−x) ln(x) x^v  dx −ln(s)∫_0 ^∞ e^(−x) x^v )  =(1/s^(v+1) )((d/dv)∫e^(−x) x^v  dx − ln(s)Γ(v+1))  =(1/s^(v+1) )((d/dv)Γ(v+1)−ln(s)Γ(v+1))  =(1/s^(v+1) )Γ(v+1)(((Γ′(v+1))/(Γ(v+1)))−ln(s))  =(1/s^(v+1) )Γ(v+1)(ψ(v+1)−ln(s))  when t=0  L[ln(t)]=(1/s^(v+1) )Γ(1)(ψ(1)−ln(s))  L[ln(t)]=((−γ−ln(s))/s)  γ is Euler′s constant
ingeneralL[tvln(t)]=0tvln(t)estdtletx=stdx=sdtL[tvln(t)]=1s0ex(xs)vln(xs)dx=1sv+10exxv(ln(x)ln(s))dx=1sv+1(0exln(x)xvdxln(s)0exxv)=1sv+1(ddvexxvdxln(s)Γ(v+1))=1sv+1(ddvΓ(v+1)ln(s)Γ(v+1))=1sv+1Γ(v+1)(Γ(v+1)Γ(v+1)ln(s))=1sv+1Γ(v+1)(ψ(v+1)ln(s))whent=0L[ln(t)]=1sv+1Γ(1)(ψ(1)ln(s))L[ln(t)]=γln(s)sγisEulersconstant

Leave a Reply

Your email address will not be published. Required fields are marked *