Question Number 114739 by mr W last updated on 20/Sep/20
$${find}\:{the}\:{largest}\:{and}\:{smallest} \\ $$$${coefficient}\:{in}\:\left(\mathrm{4}+\mathrm{3}{x}\right)^{−\mathrm{5}} . \\ $$
Answered by mr W last updated on 20/Sep/20
$$\left(\mathrm{4}+\mathrm{3}{x}\right)^{−\mathrm{5}} =\mathrm{4}^{−\mathrm{5}} \left(\mathrm{1}+\frac{\mathrm{3}{x}}{\mathrm{4}}\right)^{−\mathrm{5}} \\ $$$$=\mathrm{4}^{−\mathrm{5}} \underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{k}} {C}_{\mathrm{4}} ^{{k}+\mathrm{4}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{{k}} {x}^{{k}} \\ $$$${we}\:{see}\:{the}\:{even}\:{terms}\:{have}\:{positive} \\ $$$${coefficients}\:{and}\:{the}\:{odd}\:{terms}\:{have} \\ $$$${always}\:{negative}\:{coefficients}. \\ $$$$ \\ $$$${even}\:{terms}:\:{k}=\mathrm{2}{n}\:{with}\:{n}=\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3},… \\ $$$${a}_{\mathrm{2}{n}} =\mathrm{4}^{−\mathrm{5}} {C}_{\mathrm{4}} ^{\mathrm{2}{n}+\mathrm{4}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}{n}} \\ $$$${let}\:{a}_{\mathrm{2}{n}} >{a}_{\mathrm{2}\left({n}+\mathrm{1}\right)} \\ $$$$\mathrm{4}^{−\mathrm{5}} {C}_{\mathrm{4}} ^{\mathrm{2}{n}+\mathrm{4}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}{n}} >\mathrm{4}^{−\mathrm{5}} {C}_{\mathrm{4}} ^{\mathrm{2}\left({n}+\mathrm{1}\right)+\mathrm{4}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}\left({n}+\mathrm{1}\right)} \\ $$$$\frac{\left(\mathrm{2}{n}+\mathrm{4}\right)!}{\mathrm{4}!\left(\mathrm{2}{n}\right)!}>\frac{\left(\mathrm{2}{n}+\mathrm{6}\right)!}{\mathrm{4}!\left(\mathrm{2}{n}+\mathrm{2}\right)!}\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} \\ $$$$\frac{\mathrm{16}}{\mathrm{9}}>\frac{\left(\mathrm{2}{n}+\mathrm{5}\right)\left({n}+\mathrm{3}\right)}{\left(\mathrm{2}{n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right)} \\ $$$$\mathrm{15}{n}^{\mathrm{2}} −\mathrm{51}{n}−\mathrm{119}>\mathrm{0} \\ $$$${n}>\frac{\mathrm{51}+\sqrt{\mathrm{51}^{\mathrm{2}} +\mathrm{4}×\mathrm{15}×\mathrm{119}}}{\mathrm{30}}\approx\mathrm{4}.\mathrm{99} \\ $$$$\Rightarrow{n}\geqslant\mathrm{5},\:{i}.{e}.\:{the}\:{largest}\:{coefficient} \\ $$$${is}\:{for}\:{the}\:{term}\:{x}^{\mathrm{10}} : \\ $$$${a}_{\mathrm{10}} =\mathrm{4}^{−\mathrm{5}} {C}_{\mathrm{4}} ^{\mathrm{14}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{10}} =\frac{\mathrm{1001}×\mathrm{3}^{\mathrm{10}} }{\mathrm{4}^{\mathrm{15}} } \\ $$$$=\frac{\mathrm{59}\:\mathrm{108}\:\mathrm{049}}{\mathrm{1}\:\mathrm{073}\:\mathrm{741}\:\mathrm{824}} \\ $$$$ \\ $$$${odd}\:{terms}:\:{k}=\mathrm{2}{n}+\mathrm{1} \\ $$$${a}_{\mathrm{2}{n}+\mathrm{1}} =−\mathrm{4}^{−\mathrm{5}} {C}_{\mathrm{4}} ^{\mathrm{2}{n}+\mathrm{5}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}{n}+\mathrm{1}} \\ $$$${let}\:{a}_{\mathrm{2}{n}+\mathrm{1}} <{a}_{\mathrm{2}\left({n}+\mathrm{1}\right)+\mathrm{1}} \\ $$$$−\mathrm{4}^{−\mathrm{5}} {C}_{\mathrm{4}} ^{\mathrm{2}{n}+\mathrm{5}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}{n}+\mathrm{1}} <−\mathrm{4}^{−\mathrm{5}} {C}_{\mathrm{4}} ^{\mathrm{2}{n}+\mathrm{7}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}{n}+\mathrm{3}} \\ $$$${C}_{\mathrm{4}} ^{\mathrm{2}{n}+\mathrm{5}} >{C}_{\mathrm{4}} ^{\mathrm{2}{n}+\mathrm{7}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} \\ $$$$\frac{\mathrm{16}}{\mathrm{9}}>\frac{\left({n}+\mathrm{3}\right)\left(\mathrm{2}{n}+\mathrm{7}\right)}{\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{3}\right)} \\ $$$$\mathrm{14}{n}^{\mathrm{2}} −\mathrm{37}{n}−\mathrm{141}>\mathrm{0} \\ $$$${n}>\frac{\mathrm{37}+\sqrt{\mathrm{37}^{\mathrm{2}} +\mathrm{4}×\mathrm{14}×\mathrm{141}}}{\mathrm{28}}\approx\mathrm{4}.\mathrm{8} \\ $$$$\Rightarrow{n}\geqslant\mathrm{5},\:{i}.{e}.\:{the}\:{smallest}\:{coefficient} \\ $$$${is}\:{for}\:{the}\:{term}\:{x}^{\mathrm{11}} . \\ $$$${a}_{\mathrm{11}} =−\mathrm{4}^{−\mathrm{5}} {C}_{\mathrm{4}} ^{\mathrm{15}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{11}} =−\frac{\mathrm{1365}×\mathrm{3}^{\mathrm{11}} }{\mathrm{4}^{\mathrm{16}} } \\ $$$$=−\frac{\mathrm{241}\:\mathrm{805}\:\mathrm{655}}{\mathrm{4}\:\mathrm{294}\:\mathrm{967}\:\mathrm{396}} \\ $$