Question Number 113794 by aurpeyz last updated on 15/Sep/20
$$\mathrm{find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{coeeficient}\:\mathrm{in}\:\left(\mathrm{3x}−\mathrm{2}\right)^{\mathrm{3}} \\ $$
Answered by mr W last updated on 15/Sep/20
$$\left(\mathrm{3}{x}−\mathrm{2}\right)^{\mathrm{3}} =\left(\mathrm{3}{x}\right)^{\mathrm{3}} +\mathrm{3}\left(\mathrm{3}{x}\right)^{\mathrm{2}} \left(−\mathrm{2}\right)+\mathrm{3}\left(\mathrm{3}{x}\right)\left(−\mathrm{2}\right)^{\mathrm{2}} +\left(−\mathrm{2}\right)^{\mathrm{3}} \\ $$$$=\mathrm{27}{x}^{\mathrm{3}} −\mathrm{54}{x}^{\mathrm{2}} +\mathrm{36}{x}−\mathrm{8} \\ $$$${max}.\:{coef}.=\mathrm{36} \\ $$$${min}.\:{coef}.=−\mathrm{54} \\ $$
Commented by aurpeyz last updated on 16/Sep/20
$${thanks}\:{Sir} \\ $$