Menu Close

Find-the-largest-integer-smaller-than-7-4-3-3-




Question Number 116987 by ZiYangLee last updated on 08/Oct/20
Find the largest integer smaller than  (7+4(√3))^3 .
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{integer}\:\mathrm{smaller}\:\mathrm{than} \\ $$$$\left(\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}\right)^{\mathrm{3}} . \\ $$
Answered by 1549442205PVT last updated on 08/Oct/20
a=(7+4(√3))^3 =343+588(√3)+1008+64(√3)  b=(7−4(√3))^3 =343−588(√3)+1008−64(√3)  a+b=1341×2=2682  0<b=(7−4(√3))^3 <1⇒[(7+4(√3))]=2681
$$\mathrm{a}=\left(\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}\right)^{\mathrm{3}} =\mathrm{343}+\mathrm{588}\sqrt{\mathrm{3}}+\mathrm{1008}+\mathrm{64}\sqrt{\mathrm{3}} \\ $$$$\mathrm{b}=\left(\mathrm{7}−\mathrm{4}\sqrt{\mathrm{3}}\right)^{\mathrm{3}} =\mathrm{343}−\mathrm{588}\sqrt{\mathrm{3}}+\mathrm{1008}−\mathrm{64}\sqrt{\mathrm{3}} \\ $$$$\mathrm{a}+\mathrm{b}=\mathrm{1341}×\mathrm{2}=\mathrm{2682} \\ $$$$\mathrm{0}<\mathrm{b}=\left(\mathrm{7}−\mathrm{4}\sqrt{\mathrm{3}}\right)^{\mathrm{3}} <\mathrm{1}\Rightarrow\left[\left(\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}\right)\right]=\mathrm{2681} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *