Question Number 185453 by cortano1 last updated on 22/Jan/23
$$\:{Find}\:{the}\:{largest}\:{possible}\:{area} \\ $$$$\:{of}\:{trapezoid}\:{that}\:{can}\:{be}\:{drawn}\: \\ $$$$\:{under}\:{the}\:{x}−{axis}\:{so}\:{that}\:{one}\: \\ $$$$\:{of}\:{its}\:{bases}\:{is}\:{on}\:{the}\:{x}−{axis}\: \\ $$$$\:{and}\:{the}\:{other}\:{two}\:{vertices}\:{are} \\ $$$$\:{on}\:{the}\:{curve}\:{y}={x}^{\mathrm{2}} −\mathrm{9}\: \\ $$
Commented by mr W last updated on 22/Jan/23
$${question}\:{is}\:{wrong}.\:{with}\:{given}\: \\ $$$${conditions}\:{trapezoid}\:{can}\:{be}\:\infty\:{large}. \\ $$
Commented by cortano1 last updated on 22/Jan/23
$${the}\:{trapezoid}\:{under}\:{x}−{axis} \\ $$
Commented by cortano1 last updated on 22/Jan/23
Commented by mathlove last updated on 22/Jan/23
$${any}\:{app}\:{used}\:{for}\:{the}\:{graph}? \\ $$
Commented by mr W last updated on 22/Jan/23
$${but}\:{your}\:{question}\:{describes}\:{a} \\ $$$${trapezoid}\:{like}\:{this}: \\ $$
Commented by mr W last updated on 22/Jan/23
Commented by mr W last updated on 22/Jan/23
$${i}\:{wrong}\:{or}\:{you}\:{wrong}? \\ $$
Commented by cortano1 last updated on 22/Jan/23
$${i}\:{think}\:{the}\:{question}\:{required}\: \\ $$$$\:{base}\:{of}\:{trapezoid}\:{must} \\ $$$${be}\:{on}\:{curve}\:{y}={x}^{\mathrm{2}} −\mathrm{9} \\ $$
Commented by mr W last updated on 22/Jan/23
$${that}'{s}\:{exactly}\:{what}\:{i}\:{showed}\:{above}: \\ $$$${one}\:{base}\:{is}\:{on}\:{the}\:{x}−{axis},\:{the} \\ $$$${other}\:{base}\:{is}\:{on}\:{the}\:{curve}. \\ $$$${bases}\:{are}\:{the}\:{two}\:{parallel}\:{sides}! \\ $$
Answered by mahdipoor last updated on 22/Jan/23
$${get}\:\:\:−\mathrm{3}\leqslant{b}\leqslant{a}\leqslant\mathrm{3} \\ $$$${S}=\frac{\mid{a}^{\mathrm{2}} −\mathrm{9}\mid×\mid{b}^{\mathrm{2}} −\mathrm{9}\mid×\mid{a}−{b}\mid}{\mathrm{2}}=\frac{\left(\mathrm{9}−{a}^{\mathrm{2}} \right)\left(\mathrm{9}−{b}^{\mathrm{2}} \right)\left({a}−{b}\right)}{\mathrm{2}} \\ $$$$\begin{cases}{\frac{\partial{S}}{\partial{b}}=\frac{\mathrm{9}−{a}^{\mathrm{2}} }{\mathrm{2}}\left(−\mathrm{9}+\mathrm{3}{b}^{\mathrm{2}} −\mathrm{2}{ba}\right)=\mathrm{0}}\\{\frac{\partial{S}}{\partial{a}}=\frac{\mathrm{9}−{b}^{\mathrm{2}} }{\mathrm{2}}\left(\mathrm{9}−\mathrm{3}{a}^{\mathrm{2}} +\mathrm{2}{ab}\right)=\mathrm{0}}\end{cases} \\ $$$$\Rightarrow\begin{cases}{{b}=\:\:\:\:\mathrm{3}\:\:\:\:\:\:{or}\:\:\:\:−\sqrt{\frac{\mathrm{9}}{\mathrm{5}}}}\\{{a}=−\mathrm{3}\:\:\:\:\:{or}\:\:\:\:\:\:\:\:\:\sqrt{\frac{\mathrm{9}}{\mathrm{5}}}\:\:}\end{cases}\:\:\:\:\: \\ $$$$\Rightarrow\:\:\:\:\:\:\:{S}=\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{S}=\frac{\mathrm{72}}{\mathrm{25}}\sqrt{\frac{\mathrm{9}}{\mathrm{5}}} \\ $$$$\Rightarrow\Rightarrow{S}\left({max}\right)=\frac{\mathrm{72}}{\mathrm{25}}\sqrt{\frac{\mathrm{9}}{\mathrm{5}}}=\frac{\mathrm{216}}{\mathrm{25}\sqrt{\mathrm{5}}} \\ $$