Menu Close

Find-the-last-2-digits-from-20-17-17-20-




Question Number 23612 by Joel577 last updated on 02/Nov/17
Find the last 2 digits from  20^(17)  + 17^(20)
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{2}\:\mathrm{digits}\:\mathrm{from} \\ $$$$\mathrm{20}^{\mathrm{17}} \:+\:\mathrm{17}^{\mathrm{20}} \\ $$
Commented by Rasheed.Sindhi last updated on 02/Nov/17
20^(17) =(2×10)^(17) =2^(17) ×10^(17)   ∴ 20^(17) has 17  0′s at the end.  ∴ 20^(17)  has no effect on last two  digits.  Hence we have to find last 2 digits  of 17^(20)  only.    17^1 =17     17^2 =289  ⋮
$$\mathrm{20}^{\mathrm{17}} =\left(\mathrm{2}×\mathrm{10}\right)^{\mathrm{17}} =\mathrm{2}^{\mathrm{17}} ×\mathrm{10}^{\mathrm{17}} \\ $$$$\therefore\:\mathrm{20}^{\mathrm{17}} \mathrm{has}\:\mathrm{17}\:\:\mathrm{0}'\mathrm{s}\:\mathrm{at}\:\mathrm{the}\:\mathrm{end}. \\ $$$$\therefore\:\mathrm{20}^{\mathrm{17}} \:\mathrm{has}\:\mathrm{no}\:\mathrm{effect}\:\mathrm{on}\:\mathrm{last}\:\mathrm{two} \\ $$$$\mathrm{digits}. \\ $$$$\mathrm{Hence}\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{find}\:\mathrm{last}\:\mathrm{2}\:\mathrm{digits} \\ $$$$\mathrm{of}\:\mathrm{17}^{\mathrm{20}} \:\mathrm{only}. \\ $$$$\:\:\mathrm{17}^{\mathrm{1}} =\mathrm{17} \\ $$$$\:\:\:\mathrm{17}^{\mathrm{2}} =\mathrm{289} \\ $$$$\vdots \\ $$
Commented by prakash jain last updated on 02/Nov/17
17^2 mod 100=80=−11  17^(20)  mod 100=11^(10)   11×11=121  11^2 =21 (mod 100)  21^2 =441=41(mod 100)  11^(10) =21^5 =21^4 ×21=(41)^2 ×21 (mod 100)  (41)^2 ×21=(50−9)^2 ×21  =81×21  =(−19)×21  =−399=−99=1 (mod 100)
$$\mathrm{17}^{\mathrm{2}} \mathrm{mod}\:\mathrm{100}=\mathrm{80}=−\mathrm{11} \\ $$$$\mathrm{17}^{\mathrm{20}} \:\mathrm{mod}\:\mathrm{100}=\mathrm{11}^{\mathrm{10}} \\ $$$$\mathrm{11}×\mathrm{11}=\mathrm{121} \\ $$$$\mathrm{11}^{\mathrm{2}} =\mathrm{21}\:\left(\mathrm{mod}\:\mathrm{100}\right) \\ $$$$\mathrm{21}^{\mathrm{2}} =\mathrm{441}=\mathrm{41}\left(\mathrm{mod}\:\mathrm{100}\right) \\ $$$$\mathrm{11}^{\mathrm{10}} =\mathrm{21}^{\mathrm{5}} =\mathrm{21}^{\mathrm{4}} ×\mathrm{21}=\left(\mathrm{41}\right)^{\mathrm{2}} ×\mathrm{21}\:\left(\mathrm{mod}\:\mathrm{100}\right) \\ $$$$\left(\mathrm{41}\right)^{\mathrm{2}} ×\mathrm{21}=\left(\mathrm{50}−\mathrm{9}\right)^{\mathrm{2}} ×\mathrm{21} \\ $$$$=\mathrm{81}×\mathrm{21} \\ $$$$=\left(−\mathrm{19}\right)×\mathrm{21} \\ $$$$=−\mathrm{399}=−\mathrm{99}=\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{100}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *