Menu Close

Find-the-last-digit-from-2-400-2-320-2-200-2-160-2-200-2-160-




Question Number 191862 by cortano12 last updated on 02/May/23
Find the last digit from    (2^(400) −2^(320) )(2^(200) +2^(160) )(2^(200) −2^(160) )
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{from}\: \\ $$$$\:\left(\mathrm{2}^{\mathrm{400}} −\mathrm{2}^{\mathrm{320}} \right)\left(\mathrm{2}^{\mathrm{200}} +\mathrm{2}^{\mathrm{160}} \right)\left(\mathrm{2}^{\mathrm{200}} −\mathrm{2}^{\mathrm{160}} \right) \\ $$
Commented by BaliramKumar last updated on 02/May/23
0
$$\mathrm{0} \\ $$
Answered by Subhi last updated on 02/May/23
  (2^(400) −2^(320) )^2   2^(400) mod10   2^4   Ξ6mod10  2^(400) Ξ6^(100) mod10Ξ6^5 mod10Ξ6mod10  6^5 =6^4 ×6Ξ6^2 mod10Ξ6mod10  by the same way   3^(320) Ξ6^(80) Ξ6mod10  thd last digit= (6−6)^2 =0
$$ \\ $$$$\left(\mathrm{2}^{\mathrm{400}} −\mathrm{2}^{\mathrm{320}} \right)^{\mathrm{2}} \\ $$$$\mathrm{2}^{\mathrm{400}} {mod}\mathrm{10}\: \\ $$$$\mathrm{2}^{\mathrm{4}} \:\:\Xi\mathrm{6}{mod}\mathrm{10} \\ $$$$\mathrm{2}^{\mathrm{400}} \Xi\mathrm{6}^{\mathrm{100}} {mod}\mathrm{10}\Xi\mathrm{6}^{\mathrm{5}} {mod}\mathrm{10}\Xi\mathrm{6}{mod}\mathrm{10} \\ $$$$\mathrm{6}^{\mathrm{5}} =\mathrm{6}^{\mathrm{4}} ×\mathrm{6}\Xi\mathrm{6}^{\mathrm{2}} {mod}\mathrm{10}\Xi\mathrm{6}{mod}\mathrm{10} \\ $$$${by}\:{the}\:{same}\:{way}\: \\ $$$$\mathrm{3}^{\mathrm{320}} \Xi\mathrm{6}^{\mathrm{80}} \Xi\mathrm{6}{mod}\mathrm{10} \\ $$$${thd}\:{last}\:{digit}=\:\left(\mathrm{6}−\mathrm{6}\right)^{\mathrm{2}} =\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *