Menu Close

find-the-last-four-digits-of-11-15999-




Question Number 157839 by gsk2684 last updated on 28/Oct/21
find the last four digits of   11^(15999) ?
findthelastfourdigitsof1115999?
Answered by Rasheed.Sindhi last updated on 29/Oct/21
11^(15999) ≡x(mod 10^4 )  ∵ gcd(11,10^4 )=1  ∴ 11^(φ(10^4 )) ≡1(mod10^4 )  φ(10^4 )=4000  Least number n for which      11^n ≡1(mod 10000)  must be any divisor of φ(10^4 )=4000    Trying for n=1,2,4,...,500,800,...4000  we can see that            11^(500) ≡1(mod10^4 )  ∵15999=500×32−1            (11^(500) )^(32) ≡(1)^(32) (mod10^4 )         11^(16000) ≡1(mod10^4 )        11^(16000) ≡1+10^4 ×10(mod10^4 )        11^(16000) ≡100001(mod10^4 )  Dividing by 11        11^(15999) ≡9091(mod10^4 )   Last 4 digits of 11^(5999)  are: 9091
1115999x(mod104)gcd(11,104)=111ϕ(104)1(mod104)ϕ(104)=4000Leastnumbernforwhich11n1(mod10000)mustbeanydivisorofϕ(104)=4000Tryingforn=1,2,4,,500,800,4000wecanseethat115001(mod104)15999=500×321(11500)32(1)32(mod104)11160001(mod104)11160001+104×10(mod104)1116000100001(mod104)Dividingby1111159999091(mod104)Last4digitsof115999are:9091
Commented by gsk2684 last updated on 31/Oct/21
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *