Menu Close

Find-the-last-three-digits-49-303-3993-202-39-606-




Question Number 151418 by mathdanisur last updated on 20/Aug/21
Find the last three digits:  49^(303)  ∙ 3993^(202)  ∙ 39^(606)
Findthelastthreedigits:49303399320239606
Answered by Olaf_Thorendsen last updated on 21/Aug/21
x = 49^(303) .3993^(202) .39^(606)   x = (7^2 )^(303) .(3.11^3 )^(202) (3.13)^(606)   x = (7.11.13)^(606) .3^(808)   x = (1001)^(606) .3^(808)   By Fermat little theorem 3^(400)  ≡ 1 [1000]  and 1001 ≡ 1 [1000]  ⇒ x ≡ (1)^(606) .3^8  [1000]    (3^8  = 6561)  x  ≡  561 [1000]  Hence the last 3 digits are 561.
x=49303.3993202.39606x=(72)303.(3.113)202(3.13)606x=(7.11.13)606.3808x=(1001)606.3808ByFermatlittletheorem34001[1000]and10011[1000]x(1)606.38[1000](38=6561)x561[1000]Hencethelast3digitsare561.

Leave a Reply

Your email address will not be published. Required fields are marked *