Menu Close

Find-the-last-three-digits-of-2019-2019-




Question Number 84782 by mr W last updated on 16/Mar/20
Find the last three digits of 2019^(2019) .
Findthelastthreedigitsof20192019.
Commented by jagoll last updated on 16/Mar/20
19^(2019)  = (18+1)^(2019)   = Σ_(i=1) ^(2019)  C_i ^(2019)  18^(2019−i)  1^i   that right?
192019=(18+1)2019=2019i=1Ci2019182019i1ithatright?
Commented by mr W last updated on 16/Mar/20
what does this help for finding the  last three digits of 19^(2019) , sir?
whatdoesthishelpforfindingthelastthreedigitsof192019,sir?
Commented by mr W last updated on 16/Mar/20
i have changed the question to 2019^(2019) ,  such that it is a huge number which  one can′t “calculate” with a calculator.
ihavechangedthequestionto20192019,suchthatitisahugenumberwhichonecantcalculatewithacalculator.
Commented by jagoll last updated on 16/Mar/20
hahaha..yes sir
hahaha..yessir
Commented by jagoll last updated on 16/Mar/20
by using little fermat theorem?
byusinglittlefermattheorem?
Commented by mr W last updated on 16/Mar/20
i don′t know this theorem. i don′t know  if there is a standard method to solve  this kind of questions. but i think  it is possible to solve them using  conventional means.
idontknowthistheorem.idontknowifthereisastandardmethodtosolvethiskindofquestions.butithinkitispossibletosolvethemusingconventionalmeans.
Commented by Tony Lin last updated on 16/Mar/20
2019^(2019)   =(2000+19)^(2019)   =C_0 ^(2019) 19^(2019) +(C_1 ^(2019) 2000^1 ×19^(2018) +∙∙∙)                                           ↑                                 10^3 ×∙∙∙  19^(2019)   =(20−1)^(2019)   =C_0 ^(2019) (−1)^(2019) +C_1 ^(2019) 20×(−1)^(2018) +  C_2 ^(2019) 20^2 ×(−1)^(2017) +C_3 ^(2019) 20^3 ×(−1)^(2016)   +∙∙∙  =10956448923979+10^3 ×∙∙∙  →the last three digits is 979
20192019=(2000+19)2019=C02019192019+(C1201920001×192018+)103×192019=(201)2019=C02019(1)2019+C1201920×(1)2018+C22019202×(1)2017+C32019203×(1)2016+=10956448923979+103×thelastthreedigitsis979
Commented by mr W last updated on 16/Mar/20
that′s correct sir! it′s that what i meant.
thatscorrectsir!itsthatwhatimeant.
Answered by mr W last updated on 16/Mar/20
here I′ll show you a general way I  developed which always works for  How to find the last three digits of  a huge number like 2019^(2019) ?    we know  (1000a+b)^n =Σ_(k=0) ^n C_k ^n (1000a)^(n−k) b^k   =Σ_(k=0) ^(n−1) C_k ^n a^(n−k) b^k 1000^(n−k) +b^n   the first terms Σ_(k=0) ^(n−1) C_k ^n a^(n−k) b^k 1000^(n−k)  are  a multiple of 1000, its last three digits  are 000, therefore the last three digits  of (1000a+b)^n  are the last three digits  of b^n . let′s denote it as  (1000a+b)^n =^(3) b^n   it means the last three digits from  (1000a+b)^n  are equal to the last three  digits from b^n .    it′s obvious that  c(1000a+b)^n =^(3) cb^n     now let′s look at 2019^(2019) .  2019^(2019) =(2000+19)^(2019)   =^3 19^(2019) =19^3 ×(19^4 )^(504) =19^3 ×(130000+321)^(504)   =^3 19^3 ×321^(504) =19^3 ×(103000+41)^(252)   =^3 19^3 ×41^(252) =19^3 ×(2825000+761)^(63)   =^3 19^3 ×761^(63) =19^3 ×761×(579000+121)^(31)   =^3 19^3 ×761×121^(31) =19^3 ×761×121×(14000+641)^(15)   =^3 19^3 ×761×121×641^(15) =19^3 ×761×121×641×(410000+881)^7   =^3 19^3 ×761×121×641×881^7 =19^3 ×761×121×641×881×(776000+161)^3   =^3 19^3 ×761×121×641×881×161^3 =761×121×641×881×(3000+59)^3   =^3 761×121×641×881×59^3   =^3 761×121×641×881×379  =^3 761×121×641×899  =^3 761×121×259  =^3 761×339  =^3 979  i.e. the last three digits of 2019^(2019)   are 979.
hereIllshowyouageneralwayIdevelopedwhichalwaysworksforHowtofindthelastthreedigitsofahugenumberlike20192019?weknow(1000a+b)n=nk=0Ckn(1000a)nkbk=n1k=0Cknankbk1000nk+bnthefirsttermsn1k=0Cknankbk1000nkareamultipleof1000,itslastthreedigitsare000,thereforethelastthreedigitsof(1000a+b)narethelastthreedigitsofbn.letsdenoteitas(1000a+b)n=3bnitmeansthelastthreedigitsfrom(1000a+b)nareequaltothelastthreedigitsfrombn.itsobviousthatc(1000a+b)n=3cbnnowletslookat20192019.20192019=(2000+19)2019=3192019=193×(194)504=193×(130000+321)504=3193×321504=193×(103000+41)252=3193×41252=193×(2825000+761)63=3193×76163=193×761×(579000+121)31=3193×761×12131=193×761×121×(14000+641)15=3193×761×121×64115=193×761×121×641×(410000+881)7=3193×761×121×641×8817=193×761×121×641×881×(776000+161)3=3193×761×121×641×881×1613=761×121×641×881×(3000+59)3=3761×121×641×881×593=3761×121×641×881×379=3761×121×641×899=3761×121×259=3761×339=3979i.e.thelastthreedigitsof20192019are979.
Commented by mr W last updated on 16/Mar/20
an other example:  17^(1789) =17×(17^2 )^(894) =17×(200+89)^(894)   =^2 17×89^(894)   =^2 17×21^(447) =17×21×(21^2 )^(223)   =^2 17×21×41^(223) =17×21×41×(41^2 )^(111)   =^2 17×21×41×81^(111) =17×21×41×81×(81^2 )^(55)   =^2 17×21×41×81×61^(55) =17×21×41×81×61×(61^2 )^(27)   =^2 17×21×41×81×61×21^(27) =17×41×81×61×(21^2 )^(14)   =^2 17×41×81×61×41^(14)   =^2 17×41×81×61×81^7 =17×41×61×81^8   =^2 17×41×61×61^4   =^2 17×41×61×21^2   =^2 17×41×61×41  =^2 17×41×1  =^2 97  i.e. the last two digits of 17^(1789)  are 97.
anotherexample:171789=17×(172)894=17×(200+89)894=217×89894=217×21447=17×21×(212)223=217×21×41223=17×21×41×(412)111=217×21×41×81111=17×21×41×81×(812)55=217×21×41×81×6155=17×21×41×81×61×(612)27=217×21×41×81×61×2127=17×41×81×61×(212)14=217×41×81×61×4114=217×41×81×61×817=17×41×61×818=217×41×61×614=217×41×61×212=217×41×61×41=217×41×1=297i.e.thelasttwodigitsof171789are97.
Commented by jagoll last updated on 16/Mar/20
amaZing
amaZing

Leave a Reply

Your email address will not be published. Required fields are marked *