Menu Close

find-the-limit-lim-n-sin-1-n-2-sin-2-n-2-sin-n-n-2-




Question Number 124355 by Eric002 last updated on 02/Dec/20
find the limit   lim_(n→∞) (sin((1/n^2 ))+sin((2/n^2 ))+......+sin((n/n^2 )))
findthelimitlimn(sin(1n2)+sin(2n2)++sin(nn2))
Answered by Dwaipayan Shikari last updated on 02/Dec/20
lim_(n→∞) sin((1/n^2 ))+sin((2/n^2 ))+...  =((1+2+3+4+5+6+..+n)/n^2 )=((n^2 +n)/(2n^2 ))=(1/2)   (As sin((1/n^2 ))→((1/n^2 )))
limnsin(1n2)+sin(2n2)+=1+2+3+4+5+6+..+nn2=n2+n2n2=12(Assin(1n2)(1n2))
Answered by mathmax by abdo last updated on 02/Dec/20
we have x−(x^3 /6)≤sinx≤x ⇒Σ_(k=1) ^n  (k/n^2 )−(1/6)Σ_(k=1) ^n  (k^3 /n^6 )≤Σ_(k=1) ^n  sin((k/n^2 ))≤Σ_(k=1) ^n  (k/n^2 ) ⇒  ((n(n+1))/(2n^2 ))−(1/(6n^3 ))(((n(n+1))/2))^2  ≤ S_n ≤((n(n+1))/(2n^2 ))   we passe to[limit (n→∞)  lim_(n→+∞) S_n =(1/2)
wehavexx36sinxxk=1nkn216k=1nk3n6k=1nsin(kn2)k=1nkn2n(n+1)2n216n3(n(n+1)2)2Snn(n+1)2n2wepasseto[limit(n)limn+Sn=12

Leave a Reply

Your email address will not be published. Required fields are marked *