Menu Close

find-the-limit-of-f-x-1-x-x-lt-1-k-x-0-c-0-1-x-x-gt-0-




Question Number 27722 by NECx last updated on 13/Jan/18
find the limit of    f(x)= { ((1+x       x<1)),((k              x=0   c=0)),((1+x     , x>0)) :}
$${find}\:{the}\:{limit}\:{of} \\ $$$$ \\ $$$${f}\left({x}\right)=\begin{cases}{\mathrm{1}+{x}\:\:\:\:\:\:\:{x}<\mathrm{1}}\\{{k}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}=\mathrm{0}\:\:\:{c}=\mathrm{0}}\\{\mathrm{1}+{x}\:\:\:\:\:,\:{x}>\mathrm{0}}\end{cases} \\ $$
Answered by NECx last updated on 15/Jan/18
  the limit is said to exist is the  LHL=RHL    LHL=lim_(x→1^− )  1+x=1+1=2  RHL=lim_(x→0^+ )  1+x=1+0=1    ∴Since the LHL≠RHL,then  the limit does not exist
$$\:\:{the}\:{limit}\:{is}\:{said}\:{to}\:{exist}\:{is}\:{the} \\ $$$${LHL}={RHL} \\ $$$$ \\ $$$${LHL}=\underset{{x}\rightarrow\mathrm{1}^{−} } {\mathrm{lim}}\:\mathrm{1}+{x}=\mathrm{1}+\mathrm{1}=\mathrm{2} \\ $$$${RHL}=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\mathrm{1}+{x}=\mathrm{1}+\mathrm{0}=\mathrm{1} \\ $$$$ \\ $$$$\therefore{Since}\:{the}\:{LHL}\neq{RHL},{then} \\ $$$${the}\:{limit}\:{does}\:{not}\:{exist} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *