Menu Close

find-the-limit-of-lim-1-t-1-t-1-t-t-0-




Question Number 90151 by JosephK last updated on 21/Apr/20
find the limit of   lim  (1/(t((√(1+t))))−(1/t)  t→0
findthelimitoflim1t(1+t1tt0
Commented by abdomathmax last updated on 21/Apr/20
f(t)=(1/(t(√(1+t))))−(1/t) ⇒f(t)=((t−t(√(1+t)))/(t^2 (√(1+t))))  =((1−(√(1+t)))/(t(√(1+t))))  we have (√(1+t))∼ 1+(t/2) +(1/2)((1/2))((1/2)−1)t^2   =1+(t/2)−(t^2 /8) ⇒1−(√(1+t))∼−(t/2)+(t^2 /8)  t(√(1+t))∼t(1+(t/2)−(t^2 /8))∼t+(t^2 /2) ⇒  f(t)∼((−(t/2)+(t^2 /8))/(t+(t^2 /2))) =((−(1/2)+(t/8))/(1+(t/2))) ⇒lim_(t→0)   f(t)=−(1/2)
f(t)=1t1+t1tf(t)=tt1+tt21+t=11+tt1+twehave1+t1+t2+12(12)(121)t2=1+t2t2811+tt2+t28t1+tt(1+t2t28)t+t22f(t)t2+t28t+t22=12+t81+t2limt0f(t)=12
Answered by jagoll last updated on 22/Apr/20
lim_(t→0)  ((1−(√(1+t)))/(t(√(1+t)))) = lim_(t→0)  ((1−(1+(t/2)))/t)  lim_(t→0)  ((−(t/2))/t) = −(1/2)
limt011+tt1+t=limt01(1+t2)tlimt0t2t=12

Leave a Reply

Your email address will not be published. Required fields are marked *