Menu Close

find-the-local-minimum-and-maximum-value-a-2-y-x-2-a-x-f-x-4-2-x-9-x-3-




Question Number 59788 by aliesam last updated on 14/May/19
find the local minimum and maximum value    a^2 y=x^2 (a−x)  f(x)=(4/(2−x))+(9/(x−3))
findthelocalminimumandmaximumvaluea2y=x2(ax)f(x)=42x+9x3
Commented by kaivan.ahmadi last updated on 14/May/19
y=((x^2 (a−x))/a^2 ) and let a>0  y′=((2ax−3x^2 )/a^2 )=0⇒x(2a−3x)=0⇒ { ((x=0)),((x=((2a)/3))) :}   { ((x<0⇒f′(x)<0)),((0<x<((2a)/3)⇒f′(x)>0)),((x>((2a)/3)⇒f′(x)<0)) :}  ⇒x=0 is local min  and  x=((2a)/3) is local max  if a<0 then  x=0 is local max and x=((2a)/3) is local min
y=x2(ax)a2andleta>0y=2ax3x2a2=0x(2a3x)=0{x=0x=2a3{x<0f(x)<00<x<2a3f(x)>0x>2a3f(x)<0x=0islocalminandx=2a3islocalmaxifa<0thenx=0islocalmaxandx=2a3islocalmin
Commented by aliesam last updated on 14/May/19
thank you sir i am waiting number to solution
thankyousiriamwaitingnumbertosolution
Commented by kaivan.ahmadi last updated on 14/May/19
f(x)=(4/(2−x))+(9/(x−3))⇒  D_f =R−{2,3}  f′(x)=(4/((2−x)^2 ))−(9/((x−3)^2 ))=0⇒  4(x−3)^2 =9(2−x)^2 ⇒  4x^2 −24x+36=9x^2 −36x+36⇒  5x^2 −12x=0⇒x(5x−12)=0⇒ { ((x=0)),((x=((12)/5))) :}  x<0⇒f′(x)<0  0<x<((12)/5)⇒f′(x)>0  x>((12)/5)⇒f′(x)<0  ⇒x=0 min and x=((12)/5)max
f(x)=42x+9x3Df=R{2,3}f(x)=4(2x)29(x3)2=04(x3)2=9(2x)24x224x+36=9x236x+365x212x=0x(5x12)=0{x=0x=125x<0f(x)<00<x<125f(x)>0x>125f(x)<0x=0minandx=125max
Commented by aliesam last updated on 14/May/19
thank you sir
thankyousir
Answered by meme last updated on 14/May/19
y=((x^2 (a−x))/a^2 ). a≠0  y^′ =((2x(a−x)−x^2 )/a^2 )=0  2x(a−x)−x^2 =0  2(a−x)=x  2a=3x  x=((2a)/3)  if x∈]−∞;((2a)/3)]y^′ ≤0.y has minimal  if x∈[((2a)/3);+∞[y^′ ≥0.y has maximal
y=x2(ax)a2.a0y=2x(ax)x2a2=02x(ax)x2=02(ax)=x2a=3xx=2a3ifx];2a3]y0.yhasminimalifx[2a3;+[y0.yhasmaximal
Answered by MJS last updated on 14/May/19
y=−(1/a^2 )x^3 +(1/a)x^2   y′=−(3/a^2 )x^2 +(2/a)x=0 ⇒ x=0∨x=((2a)/3)  y′′=−(6/a^2 )x+(2/a)       x=0 ⇒ y′′=(2/a) ⇒ max with a<0; min with a>0       x=((2a)/3) ⇒ y′′=−(2/a) ⇒ min with a<0; max with a>0    f(x)=(4/(2−x))+(9/(x−3))=((5x−6)/((x−3)(x−2)))  f′(x)=−((x(5x−12))/((x−3)^2 (x−2)^2 ))=0 ⇒ x=0∨x=((12)/5)  f′′(x)=((2(5x^3 −18x^2 +36))/((x−3)^3 (x−2)^3 ))  f′′(0)=(1/3)>0 ⇒ min at x=0  f′′(((12)/5))=−((625)/3) ⇒ max at x=((12)/5)
y=1a2x3+1ax2y=3a2x2+2ax=0x=0x=2a3y=6a2x+2ax=0y=2amaxwitha<0;minwitha>0x=2a3y=2aminwitha<0;maxwitha>0f(x)=42x+9x3=5x6(x3)(x2)f(x)=x(5x12)(x3)2(x2)2=0x=0x=125f(x)=2(5x318x2+36)(x3)3(x2)3f(0)=13>0minatx=0f(125)=6253maxatx=125

Leave a Reply

Your email address will not be published. Required fields are marked *