Menu Close

Find-the-local-minimum-value-of-f-x-where-f-x-x-1-x-2-x-1-x-




Question Number 57012 by rahul 19 last updated on 28/Mar/19
Find the local minimum value of f(x)  where f(x)= (x−(1/x))+((2/(x−(1/x)))) ?
Findthelocalminimumvalueoff(x)wheref(x)=(x1x)+(2x1x)?
Answered by mr W last updated on 29/Mar/19
let t=x−(1/x)  if t>0:  f(x)=t+(2/t)≥2(√(t×(2/t)))=2(√2)=local min  if t<0:  f(x)=t+(2/t)=−(−t+(2/(−t)))≤−2(√((−t)×(2/((−t)))))=−2(√2)=local max
lett=x1xift>0:f(x)=t+2t2t×2t=22=localminift<0:f(x)=t+2t=(t+2t)2(t)×2(t)=22=localmax
Commented by rahul 19 last updated on 30/Mar/19
thank you sir!
Commented by rahul 19 last updated on 30/Mar/19
Sir, how to do the same problem if   f(x)= (x+(1/x))+((2/(x+(1/x)))) .
Sir,howtodothesameproblemiff(x)=(x+1x)+(2x+1x).
Commented by mr W last updated on 31/Mar/19
let t=x+(1/x)  for x>0: t≥2  for x<0: t≤−2    f(t)=t+(2/t)  f′(t)=1−(2/t^2 )>0⇒f(t) is strictly increasing    if t≥2, i.e. x>0:  sincs f(t) is strictly increasing  ⇒min. =f(t=2)=3     if t≤−2, i.e. x<0:  sincs f(t) is strictly increasing  ⇒max. =f(t=−2)=−3
lett=x+1xforx>0:t2forx<0:t2f(t)=t+2tf(t)=12t2>0f(t)isstrictlyincreasingift2,i.e.x>0:sincsf(t)isstrictlyincreasingmin.=f(t=2)=3ift2,i.e.x<0:sincsf(t)isstrictlyincreasingmax.=f(t=2)=3
Commented by rahul 19 last updated on 31/Mar/19
Sir ,in this case we cannot apply  A.M≥G.M because t≥2 for x>0  unlike the above Q. where local minimum  occured at t=(√2) ?
Sir,inthiscasewecannotapplyA.MG.Mbecauset2forx>0unliketheaboveQ.wherelocalminimumoccuredatt=2?
Commented by mr W last updated on 31/Mar/19
that′s the reason,  you are absolutely correct!
thatsthereason,youareabsolutelycorrect!
Answered by MJS last updated on 28/Mar/19
f(x)=((x^4 +1)/(x(x^2 −1)))  f′(x)=((x^6 −3x^4 −3x^2 +1)/(x^2 (x^2 −1)^2 ))  x^6 −3x^4 −3x^2 +1=0  x=(√y)  y^3 −3y^2 −3y+1=0  y=z+1  z^3 −6z−4=0  trying factors of −4 we find  z_1 =−2 ⇒ y_1 =−1 ⇒ x_1 =±i  (z+2)(z^2 −2z−2)=0  z_2 =1−(√3) ⇒ y_2 =2−(√3) ⇒ x_2 =±(((√6)/2)−((√2)/2))  z_3 =1+(√3) ⇒ y_3 =2+(√3) ⇒ x_3 =±(((√6)/2)+((√2)/2))  f′′(x)=((2(x^6 +9x^4 −3x^2 +1))/(x^3 (x^2 −1)^3 ))  f′′(−((√6)/2)−((√2)/2))<0  f′′(−((√6)/2)+((√2)/2))>0 ⇒ min; f(x)=2(√2)  f′′(((√6)/2)−((√2)/2))<0  f′′(((√6)/2)+((√2)/2))>0 ⇒ min ⇒ f(x)=2(√2)
f(x)=x4+1x(x21)f(x)=x63x43x2+1x2(x21)2x63x43x2+1=0x=yy33y23y+1=0y=z+1z36z4=0tryingfactorsof4wefindz1=2y1=1x1=±i(z+2)(z22z2)=0z2=13y2=23x2=±(6222)z3=1+3y3=2+3x3=±(62+22)f(x)=2(x6+9x43x2+1)x3(x21)3f(6222)<0f(62+22)>0min;f(x)=22f(6222)<0f(62+22)>0minf(x)=22
Commented by rahul 19 last updated on 30/Mar/19
thank you sir!

Leave a Reply

Your email address will not be published. Required fields are marked *