Menu Close

Find-the-locus-of-the-points-represented-by-the-complex-number-z-such-that-2-z-3-z-6i-




Question Number 83991 by Rio Michael last updated on 08/Mar/20
Find the locus of the points represented by  the complex number ,z, such that           2∣z−3∣ = ∣z−6i∣
Findthelocusofthepointsrepresentedbythecomplexnumber,z,suchthat2z3=z6i
Commented by mathmax by abdo last updated on 08/Mar/20
let z=x+iy    (e)⇔2∣x+iy−3∣=∣x+iy−6i∣ ⇒  2(√((x−3)^2  +y^2 ))=(√(x^2 +(y−6)^2 )) ⇒4{(x−3)^2  +y^2 }=x^2  +(y−6)^2  ⇒  4(x^2 −6x +9 +y^2 )=x^2 +y^2 −12y +36 ⇒  4x^2 −24x +36 +4y^2 =x^2  +y^2 −12y +36 ⇒  4x^2 −24x+4y^2 −x^2 −y^2  +12y =0 ⇒  3x^2 +3y^2 −24x +12y =0 ⇒x^2  +y^2 −8x +4y =0 ⇒  x^2 −8x +16 −16 +y^2  +4y +4−4 =0 ⇒  (x−4)^2  +(y+2)^2 =(2(√5))^2  so the locus is circle with centre  w(4,−2) and radius r=2(√5)
letz=x+iy(e)2x+iy3∣=∣x+iy6i2(x3)2+y2=x2+(y6)24{(x3)2+y2}=x2+(y6)24(x26x+9+y2)=x2+y212y+364x224x+36+4y2=x2+y212y+364x224x+4y2x2y2+12y=03x2+3y224x+12y=0x2+y28x+4y=0x28x+1616+y2+4y+44=0(x4)2+(y+2)2=(25)2sothelocusiscirclewithcentrew(4,2)andradiusr=25

Leave a Reply

Your email address will not be published. Required fields are marked *