Menu Close

Find-the-locus-of-z-if-arg-z-2-z-3-pi-4-




Question Number 19623 by Tinkutara last updated on 13/Aug/17
Find the locus of z if arg(((z − 2)/(z − 3))) = (π/4)
Findthelocusofzifarg(z2z3)=π4
Answered by ajfour last updated on 13/Aug/17
let z=x+iy  ⇒  arg[((x−2+iy)/(x−3+iy))]=(π/4)  ⇒  arg[(((x−2+iy)(x−3−iy))/((x−3)^2 +y^2 ))]=(π/4)  ⇒  arg[(x−2)(x−3)+y^2 −iy]=(π/4)  or ((−y)/((x^2 +y^2 −5x+6)))=tan (π/4)  ⇒   x^2 +y^2 −5x+y+6=0  ⇒    (x−(5/2))^2 +(y+(1/2))^2 +6−((26)/4)=0  ⇒    (x−(5/2))^2 +(y+(1/2))^2 =((1/( (√2))))^2   or       ∣z−(5/2)+(i/2)∣=(1/( (√2)))    Locus is a circle with radius r=(1/( (√2)))   and centre z_0 =(5/2)−(i/2) .
letz=x+iyarg[x2+iyx3+iy]=π4arg[(x2+iy)(x3iy)(x3)2+y2]=π4arg[(x2)(x3)+y2iy]=π4ory(x2+y25x+6)=tanπ4x2+y25x+y+6=0(x52)2+(y+12)2+6264=0(x52)2+(y+12)2=(12)2orz52+i2∣=12Locusisacirclewithradiusr=12andcentrez0=52i2.
Commented by Tinkutara last updated on 13/Aug/17
But answer is x^2  + y^2  − 5x ± y + 6 = 0  Why ± y?
Butanswerisx2+y25x±y+6=0Why±y?
Commented by ajfour last updated on 13/Aug/17
we can take arg(((z−2)/(z−3)))=±(π/4) .
wecantakearg(z2z3)=±π4.
Commented by Tinkutara last updated on 13/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!
Commented by ajfour last updated on 13/Aug/17

Leave a Reply

Your email address will not be published. Required fields are marked *