Menu Close

Find-the-maximum-and-minimum-value-of-1-sinx-1-sin3x-1-sin2x-




Question Number 114765 by dw last updated on 21/Sep/20
Find the maximum. and minimum value of ⌊1+sinx⌋+⌊1+sin3x⌋+⌊1+sin2x⌋
Findthemaximum.andminimumvalueof1+sinx+1+sin3x+1+sin2x
Answered by PRITHWISH SEN 2 last updated on 21/Sep/20
let   f(x)=⌊1+sin x⌋+⌊1+sin 2x⌋+⌊1+sin 3x⌋  Now,     −1≤sin nx ≤ 1    0≤ ⌊1+sin nx ⌋ ≤ 2  ∴ the min. value of f(x) = 0  now for the max. value  the period of f(x)= L.C.M (2π,((2π)/2) ,((2π)/3))= 2π  we know that the fundamental period of    sin x ∈ [−(π/2), (π/2)]  ∴ the max. value of                                f(x) = max. {f((𝛑/2)),f((𝛑/4)),f((𝛑/6))}   {∵  sinx is an increasing function in [−(𝛑/2),(𝛑/2)] }    f((𝛑/2))= ⌊1+sin (π/2)⌋+⌊1+sin ((2π)/2)⌋+⌊1+sin ((3π)/2)⌋               = 2+1+0=3    f((π/4)) = ⌊1+sin (π/4)⌋+⌊1+sin ((2π)/4)⌋+⌊1+sin ((3π)/4)⌋                = 1+2+1 = 4    f((π/6)) = ⌊1+sin (π/6)⌋+⌊1+sin ((2π)/6)⌋+⌊1+sin ((3π)/6)⌋                = 1+1+2 = 4  ∴ the max. value of f(x) = 4
letf(x)=1+sinx+1+sin2x+1+sin3xNow,1sinnx101+sinnx2themin.valueoff(x)=0nowforthemax.valuetheperiodoff(x)=L.C.M(2π,2π2,2π3)=2πweknowthatthefundamentalperiodofsinx[π2,π2]themax.valueoff(x)=max.{f(π2),f(π4),f(π6)}{sinxisanincreasingfunctionin[π2,π2]}f(π2)=1+sinπ2+1+sin2π2+1+sin3π2=2+1+0=3f(π4)=1+sinπ4+1+sin2π4+1+sin3π4=1+2+1=4f(π6)=1+sinπ6+1+sin2π6+1+sin3π6=1+1+2=4themax.valueoff(x)=4
Commented by dw last updated on 21/Sep/20
Thank you Sir
ThankyouSir
Commented by PRITHWISH SEN 2 last updated on 21/Sep/20
welcome
welcome

Leave a Reply

Your email address will not be published. Required fields are marked *