Menu Close

find-the-maximum-and-minimum-values-of-2cos2x-cos4x-in-the-range-0-lt-x-lt-pi-sketch-the-curve-




Question Number 123337 by aurpeyz last updated on 25/Nov/20
find the maximum and minimum  values of 2cos2x−cos4x in the range  0<x<π. sketch the curve
findthemaximumandminimumvaluesof2cos2xcos4xintherange0<x<π.sketchthecurve
Commented by bemath last updated on 25/Nov/20
max = 1.5 ; min = −3   range ⇒ −3≤y≤1.5
max=1.5;min=3range3y1.5
Commented by bemath last updated on 25/Nov/20
Commented by aurpeyz last updated on 25/Nov/20
thanks
thanks
Commented by aurpeyz last updated on 25/Nov/20
pls explain how you got min=−3.   i tried so hard but couldnt
plsexplainhowyougotmin=3.itriedsohardbutcouldnt
Commented by bemath last updated on 25/Nov/20
let ∅(x)=2cos 2x−cos 4x   ∅(x)=2cos 2x−(2cos^2 2x−1)  ∅(x)=−2cos^2 2x+2cos 2x+1  ∅(x) = −2(cos^2 2x−cos 2x)+1  ∅(x)=−2[(cos 2x−(1/2))^2 −(1/4)]+1  ∅(x)=−2(cos 2x−(1/2))^2 +(3/2)  → { ((max when cos 2x=(1/2))),((min when cos 2x=−1)) :}
let(x)=2cos2xcos4x(x)=2cos2x(2cos22x1)(x)=2cos22x+2cos2x+1(x)=2(cos22xcos2x)+1(x)=2[(cos2x12)214]+1(x)=2(cos2x12)2+32{maxwhencos2x=12minwhencos2x=1
Commented by MJS_new last updated on 25/Nov/20
cos 2x =−1+2cos^2  x  cos 4x =−1+2cos^2  2x =       =−1+2(−1+2cos^2  x)^2 =       =1−8cos^2  x +8cos^4  x  ⇒2cos 2x −cos 4x =       =−3+12cos^2  x −8cos^4  x =f(x)  we can always use  t=tan (x/2) ⇔ x=2arctan t  ⇒ sin x =((2t)/(t^2 +1))∧cos x =−((t^2 −1)/(t^2 +1))  ⇒ −3+12cos^2  x −8cos^4  x =  =((t^8 +20t^6 −90t^4 +20t^2 +1)/((t^2 +1)^4 ))=g(t)  (dg/dt)=0  −32((t(t^6 −15t^4 +15t^2 −1))/((t^2 +1)^5 ))=0  t(t^6 −15t^4 +15t^2 −1)=0  t_1 =0  t^6 −15t^4 +15t^2 −1=0  trying factors of −1 ⇒ t_(2, 3) =±1  t^4 −14t^2 +1=0  ⇒ t^2 =7±4(√3)  ⇒ t=±(√(7±4(√3)))=±(2±(√3))  now we have  t∈{−2−(√3), −1, −2+(√3), 0, 2−(√3), 1, 2+(√3)}  now t=tan (x/2) ⇒ x=2nπ+2arctan t  for 0<x<π we get  (x=0∨x=π ⇒ f(x)=1)  x=(π/6) ⇒ f(x)=(3/2)  x=(π/2) ⇒ f(x)=−3  x=((5π)/6) ⇒ f(x)=(3/2)  ⇒ minimum is −3 and maximum is (3/2)
cos2x=1+2cos2xcos4x=1+2cos22x==1+2(1+2cos2x)2==18cos2x+8cos4x2cos2xcos4x==3+12cos2x8cos4x=f(x)wecanalwaysuset=tanx2x=2arctantsinx=2tt2+1cosx=t21t2+13+12cos2x8cos4x==t8+20t690t4+20t2+1(t2+1)4=g(t)dgdt=032t(t615t4+15t21)(t2+1)5=0t(t615t4+15t21)=0t1=0t615t4+15t21=0tryingfactorsof1t2,3=±1t414t2+1=0t2=7±43t=±7±43=±(2±3)nowwehavet{23,1,2+3,0,23,1,2+3}nowt=tanx2x=2nπ+2arctantfor0<x<πweget(x=0x=πf(x)=1)x=π6f(x)=32x=π2f(x)=3x=5π6f(x)=32minimumis3andmaximumis32

Leave a Reply

Your email address will not be published. Required fields are marked *