Menu Close

Find-the-maximum-area-of-a-triangle-inscribed-in-an-ellipse-with-parameters-a-and-b-




Question Number 50674 by mr W last updated on 18/Dec/18
Find the maximum area of a triangle  inscribed in an ellipse with parameters  a and b.
Findthemaximumareaofatriangleinscribedinanellipsewithparametersaandb.
Commented by ajfour last updated on 18/Dec/18
Commented by MJS last updated on 18/Dec/18
all triangles created as follows have the  same (maximum) area  1. draw a circle with radius a  2. insert an equilateral triangle with 0≤α<((2π)/3)  A= (((acos α)),((asin α)) ) B= (((acos (α+((2π)/3)))),((asin (α+((2π)/3)))) )  C= (((acos (α−((2π)/3)))),((asin (α−((2π)/3)))) )  3. compress  (((x′)),((y′)) ) = ((x),(((b/a)y)) )
alltrianglescreatedasfollowshavethesame(maximum)area1.drawacirclewithradiusa2.insertanequilateraltrianglewith0α<2π3A=(acosαasinα)B=(acos(α+2π3)asin(α+2π3))C=(acos(α2π3)asin(α2π3))3.compress(xy)=(xbay)
Commented by mr W last updated on 19/Dec/18
thank you sir!
thankyousir!
Answered by ajfour last updated on 18/Dec/18
let  a > b , B(acos θ, bsin θ)  A = abcos θ(1−sin θ)  (dA/dθ) = 0  ⇒  cos^2 θ = sin^2 θ−sin θ  ⇒  2sin^2 θ−sin θ−1= 0          (sin θ−(1/4))^2 = (9/(16))  ⇒  sin θ = −(1/2)    ⇒ θ = −(π/6)     A_(max)  = ((3(√3) ab)/4) .
leta>b,B(acosθ,bsinθ)A=abcosθ(1sinθ)dAdθ=0cos2θ=sin2θsinθ2sin2θsinθ1=0(sinθ14)2=916sinθ=12θ=π6Amax=33ab4.
Commented by mr W last updated on 18/Dec/18
thanks! but why must A be on the axis?
thanks!butwhymustAbeontheaxis?
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Dec/18
△ABC  A(acosα,bcosα) B(acosβ,bsinβ)  C(acosγ,bsinγ)  (1/2)[x_1 (y_2 −y_3 )+x_2 (y_3 −y_1 )+x_3 (y_1 −y_2 )]  =(1/2)ab[cosα(sinβ−sinγ)+cosβ(sinγ−sinα)+cosγ(sinα−sinβ)]  =((ab)/2)[sin(β−α)+sin(γ−β)+sin(α−γ)]  =((ab)/2)[−2sin(((α−β)/2))cos(((α−β)/2))+2sin(((α−β)/2))cos(((2γ−α−β)/2))]  =((ab)/2)×2sin(((α−β)/2))[2sin(((γ−β)/2))sin(((γ−α)/2))]  =−2absin(((α−β)/2))sin(((β−γ)/2))sin(((γ−α)/2))  so area of △ABC is  2absin(((α−β)/2))sin(((β−γ)/2))sin(((γ−α)/2))  wait pls maximising the area...  now let P corespond to A in auxilary circle  Q→B   and R→C  area of △PQR=2a^2 sin(((α−β)/2))sin(((β−γ)/2))sin(((γ−α)/2))  ((area△ABC)/(area △PQR))=((2ab)/(2a^2 ))=(b/a)  max area △ABC=(b/a)×max area△ PQR  △PQR achive max area when it is eauilateral  triangle.hence△ABC is also equilateral   triangle...  area of equilateral tria ngle inscribed in circle  of rsdius a is  =(1/2)(acos30^o +acos30^o )×(a+asin30^o  )  =(a^2 /2)(2×((√3)/2))(1+sin30^o )=((3(√3))/4)a^2   so required area of trizngle△ABC=(b/a)×((3(√3))/4)a^2   =((3(√3))/4)ab
ABCA(acosα,bcosα)B(acosβ,bsinβ)C(acosγ,bsinγ)12[x1(y2y3)+x2(y3y1)+x3(y1y2)]=12ab[cosα(sinβsinγ)+cosβ(sinγsinα)+cosγ(sinαsinβ)]=ab2[sin(βα)+sin(γβ)+sin(αγ)]=ab2[2sin(αβ2)cos(αβ2)+2sin(αβ2)cos(2γαβ2)]=ab2×2sin(αβ2)[2sin(γβ2)sin(γα2)]=2absin(αβ2)sin(βγ2)sin(γα2)soareaofABCis2absin(αβ2)sin(βγ2)sin(γα2)waitplsmaximisingtheareanowletPcorespondtoAinauxilarycircleQBandRCareaofPQR=2a2sin(αβ2)sin(βγ2)sin(γα2)areaABCareaPQR=2ab2a2=bamaxareaABC=ba×maxareaPQRPQRachivemaxareawhenitiseauilateraltriangle.henceABCisalsoequilateraltriangleareaofequilateraltriangleinscribedincircleofrsdiusais=12(acos30o+acos30o)×(a+asin30o)=a22(2×32)(1+sin30o)=334a2sorequiredareaoftrizngleABC=ba×334a2=334ab
Commented by mr W last updated on 20/Dec/18
thanks sir!
thankssir!

Leave a Reply

Your email address will not be published. Required fields are marked *