Question Number 50674 by mr W last updated on 18/Dec/18

Commented by ajfour last updated on 18/Dec/18

Commented by MJS last updated on 18/Dec/18

Commented by mr W last updated on 19/Dec/18

Answered by ajfour last updated on 18/Dec/18

Commented by mr W last updated on 18/Dec/18

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Dec/18
![△ABC A(acosα,bcosα) B(acosβ,bsinβ) C(acosγ,bsinγ) (1/2)[x_1 (y_2 −y_3 )+x_2 (y_3 −y_1 )+x_3 (y_1 −y_2 )] =(1/2)ab[cosα(sinβ−sinγ)+cosβ(sinγ−sinα)+cosγ(sinα−sinβ)] =((ab)/2)[sin(β−α)+sin(γ−β)+sin(α−γ)] =((ab)/2)[−2sin(((α−β)/2))cos(((α−β)/2))+2sin(((α−β)/2))cos(((2γ−α−β)/2))] =((ab)/2)×2sin(((α−β)/2))[2sin(((γ−β)/2))sin(((γ−α)/2))] =−2absin(((α−β)/2))sin(((β−γ)/2))sin(((γ−α)/2)) so area of △ABC is 2absin(((α−β)/2))sin(((β−γ)/2))sin(((γ−α)/2)) wait pls maximising the area... now let P corespond to A in auxilary circle Q→B and R→C area of △PQR=2a^2 sin(((α−β)/2))sin(((β−γ)/2))sin(((γ−α)/2)) ((area△ABC)/(area △PQR))=((2ab)/(2a^2 ))=(b/a) max area △ABC=(b/a)×max area△ PQR △PQR achive max area when it is eauilateral triangle.hence△ABC is also equilateral triangle... area of equilateral tria ngle inscribed in circle of rsdius a is =(1/2)(acos30^o +acos30^o )×(a+asin30^o ) =(a^2 /2)(2×((√3)/2))(1+sin30^o )=((3(√3))/4)a^2 so required area of trizngle△ABC=(b/a)×((3(√3))/4)a^2 =((3(√3))/4)ab](https://www.tinkutara.com/question/Q50712.png)
Commented by mr W last updated on 20/Dec/18
