Menu Close

Find-the-maximum-of-f-x-cos-x-tan-x-1-tan-x-sin-x-in-terms-of-with-gt-1-and-0-lt-x-lt-tan-1-




Question Number 48739 by mr W last updated on 28/Nov/18
Find the maximum of  f(x)=cos x + ((λ tan x−1)/(tan x−λ)) sin x  in terms of λ  with λ>1 and 0<x<tan^(−1) λ
Findthemaximumoff(x)=cosx+λtanx1tanxλsinxintermsofλwithλ>1and0<x<tan1λ
Answered by MJS last updated on 28/Nov/18
f(x)=λ((cos 2x)/(λcos x −sin x))  x=arctan t ⇒ cos x =(1/( (√(t^2 +1)))); sin x =(t/( (√(t^2 +1))))  f(t)=λ(((t−1)(t+1))/((t−λ)(√(t^2 +1))))  f′(t)=−λ((λt^3 −3t^2 +3λt−1)/((t−λ)(t^2 +1)^(3/2) ))  t^3 −(3/λ)t^2 +3t−(1/λ)=0  t=z+(1/λ)  z^3 +((3(λ^2 −1))/λ^2 )z+((2(λ^2 −1))/λ^3 )=0  D=(((λ^2 −1)^2 )/λ^4 )≥0∣λ∈R  z_1 =(((λ^2 −1))^(1/3) /λ)(((λ−1))^(1/3) −((λ+1))^(1/3) )  t_1 =z_1 +(1/λ)=(1/λ)(1+((λ^2 −1))^(1/3) (((λ−1))^(1/3) −((λ+1))^(1/3) ))  x_1 =arctan ((1/λ)(1+((λ^2 −1))^(1/3) (((λ−1))^(1/3) −((λ+1))^(1/3) )))
f(x)=λcos2xλcosxsinxx=arctantcosx=1t2+1;sinx=tt2+1f(t)=λ(t1)(t+1)(tλ)t2+1f(t)=λλt33t2+3λt1(tλ)(t2+1)3/2t33λt2+3t1λ=0t=z+1λz3+3(λ21)λ2z+2(λ21)λ3=0D=(λ21)2λ40λRz1=λ213λ(λ13λ+13)t1=z1+1λ=1λ(1+λ213(λ13λ+13))x1=arctan(1λ(1+λ213(λ13λ+13)))
Commented by mr W last updated on 28/Nov/18
thank you sir!  it′s correct and perfect! great job!
thankyousir!itscorrectandperfect!greatjob!

Leave a Reply

Your email address will not be published. Required fields are marked *