Question Number 167098 by mr W last updated on 06/Mar/22
$${find}\:{the}\:{maximum}\:{of} \\ $$$${f}\left({x}\right)=\mathrm{sin}\:{x}+\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\:\mathrm{cos}\:{x} \\ $$
Answered by cortano1 last updated on 06/Mar/22
$$\:\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}\:=\:\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{2x}} \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{2x}}\:+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2x} \\ $$$$\mathrm{f}\:'\left(\mathrm{x}\right)=\frac{\mathrm{cos}\:\mathrm{2x}}{\:\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{2x}}}+\mathrm{cos}\:\mathrm{2x}\:=\mathrm{0} \\ $$$$\:\Rightarrow\mathrm{cos}\:\mathrm{2x}+\mathrm{cos}\:\mathrm{2x}\:\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{2x}}\:=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cos}\:\mathrm{2x}\:\left(\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{sin}\:\mathrm{2x}}\:\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cos}\:\mathrm{2x}\:=\mathrm{0}\:\Rightarrow\mathrm{x}=\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{max}\:\mathrm{f}\left(\mathrm{x}\right)=\:\sqrt{\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by cortano1 last updated on 06/Mar/22
$$\mathrm{for}\:\mathrm{minimum}\: \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}\:\mathrm{cos}\:\mathrm{x} \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\mathrm{2x} \\ $$$$\:\mathrm{f}\:'\left(\mathrm{x}\right)=\mathrm{cos}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:\mathrm{2x}=\mathrm{0} \\ $$$$\:\mathrm{cos}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{x}−\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}=\mathrm{0} \\ $$$$\:\left(\mathrm{cos}\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\left(\mathrm{sin}\:\mathrm{x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}+\mathrm{1}\right)\left(\mathrm{cos}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}\right)=\mathrm{0} \\ $$$$\Rightarrow\begin{cases}{\mathrm{cos}\:\mathrm{x}+\mathrm{sin}\:\mathrm{x}=−\mathrm{1}\Rightarrow\mathrm{1}+\mathrm{sin}\:\mathrm{2x}=\mathrm{1}}\\{\mathrm{cos}\:\mathrm{x}−\mathrm{sin}\:\mathrm{x}=\mathrm{0}}\end{cases} \\ $$$$\Rightarrow\begin{cases}{\mathrm{max}=\sqrt{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}}\\{\mathrm{min}=−\mathrm{1}}\end{cases}\:\Rightarrow−\mathrm{1}\leqslant\mathrm{f}\left(\mathrm{x}\right)\leqslant\sqrt{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by mahdipoor last updated on 06/Mar/22
$${sinx}+{cosx}={u}=\sqrt{\mathrm{2}}{sin}\left(\mathrm{45}+{x}\right) \\ $$$${sinx}.{cosx}=\mathrm{0}.\mathrm{5}\left({u}^{\mathrm{2}} −\mathrm{1}\right) \\ $$$${f}\left({x}\right)={f}\left({u}\right)=\mathrm{0}.\mathrm{5}\left({u}^{\mathrm{2}} +\mathrm{2}{u}−\mathrm{1}\right)=\mathrm{0}.\mathrm{5}\left({u}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1} \\ $$$$\Rightarrow{man}\:{of}\:{f}={f}\left({max}\:{of}\:{u}\right)={f}\left(\sqrt{\mathrm{2}}\right)= \\ $$$$\mathrm{0}.\mathrm{5}\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}=\sqrt{\mathrm{2}}+\mathrm{0}.\mathrm{5} \\ $$
Commented by mr W last updated on 06/Mar/22
$${thanks}\:{sirs}! \\ $$