Menu Close

Find-the-maximum-value-of-f-x-3-2cosh-ln-x-3-




Question Number 100370 by Rio Michael last updated on 26/Jun/20
Find the maximum value of  f(x) = (3/(2cosh (ln x) + 3))
Findthemaximumvalueoff(x)=32cosh(lnx)+3
Commented by bemath last updated on 26/Jun/20
y_(max) = 0.6
ymax=0.6
Commented by mr W last updated on 26/Jun/20
maximum f(x) means mininum cosh (ln x),  which is 1 when ln x=0 or x=1.  max. f(x)=f(1)=(3/(2×1+3))=(3/5)
maximumf(x)meansmininumcosh(lnx),whichis1whenlnx=0orx=1.max.f(x)=f(1)=32×1+3=35
Answered by MJS last updated on 26/Jun/20
cosh ln x =(1/2)(x+(1/x))  f(x)=((3x)/(x^2 +3x+1))  f′(x)=−((3(x^2 −1))/((x^2 +3x+1)^2 ))  f′(x)=0 ⇒ x=±1  f′′(x)=((6(x^3 −3x−3))/((x^2 +3x+1)^3 ))  f′′(−1)=6>0 ⇒ min at x=−1; y=3  f′′(1)=−(6/(25))<0 ⇒ max at x=1; y=(3/5)  but these are only local  −∞<f(x)<+∞  f(x) is not defined for x=−(3/2)±((√5)/2)
coshlnx=12(x+1x)f(x)=3xx2+3x+1f(x)=3(x21)(x2+3x+1)2f(x)=0x=±1f(x)=6(x33x3)(x2+3x+1)3f(1)=6>0minatx=1;y=3f(1)=625<0maxatx=1;y=35buttheseareonlylocal<f(x)<+f(x)isnotdefinedforx=32±52
Commented by bemath last updated on 26/Jun/20
sir cosh (ln x) = (1/2)(x+(1/x)) it is from series?
sircosh(lnx)=12(x+1x)itisfromseries?
Commented by MJS last updated on 26/Jun/20
no; from definition  cosh x =((e^x +e^(−x) )/2)  sinh x =((e^x −e^(−x) )/2)  cos x =((e^(ix) +e^(ix) )/2)  sin x =((e^(ix) −e^(−ix) )/(2i))
no;fromdefinitioncoshx=ex+ex2sinhx=exex2cosx=eix+eix2sinx=eixeix2i
Commented by bemath last updated on 26/Jun/20
oo thank you sir
oothankyousir
Commented by Rio Michael last updated on 26/Jun/20
thank you′all
thankyouall
Commented by mr W last updated on 26/Jun/20
MJS sir:  i think cosh (ln x) and (1/2)(x+(1/x)) are  not exactly the same.  the domain of cosh (ln x) is x>0,  but the domain of (1/2)(x+(1/x)) is x<0  and x>0.  therefore (3/(2 cosh (ln x)+3)) has really  a global maximum (3/6).
MJSsir:ithinkcosh(lnx)and12(x+1x)arenotexactlythesame.thedomainofcosh(lnx)isx>0,butthedomainof12(x+1x)isx<0andx>0.therefore32cosh(lnx)+3hasreallyaglobalmaximum36.
Commented by MJS last updated on 26/Jun/20
I think cosh ln x is defined for x∈R\{0}  because ln (−∣x∣) =πi+ln ∣x∣  and e^(πi+ln ∣x∣) =−∣x∣ and e^(−(iπ+ln x)) =−(1/(∣x∣))  ⇒ cosh ln (−∣x∣) =−((x^2 +1)/(2∣x∣))
IthinkcoshlnxisdefinedforxR{0}becauseln(x)=πi+lnxandeπi+lnx=xande(iπ+lnx)=1xcoshln(x)=x2+12x

Leave a Reply

Your email address will not be published. Required fields are marked *