Question Number 106941 by mr W last updated on 08/Aug/20
$${Find}\:{the}\:{maximum}\:{value}\:{of}\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{sin}^{\mathrm{5}} \:\theta_{{i}} \\ $$$${with}\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{sin}\:\theta_{{i}} =\mathrm{0}. \\ $$
Answered by mr W last updated on 08/Aug/20
$${let}\:{x}_{{i}} =\mathrm{sin}\:\theta_{{i}} \\ $$$$−\mathrm{1}\leqslant{x}_{{i}} \leqslant\mathrm{1} \\ $$$${let}\:{x}_{\mathrm{1}} ={x}_{\mathrm{2}} =…={x}_{{m}} =\mathrm{1}, \\ $$$$\Rightarrow{x}_{{m}+\mathrm{1}} ={x}_{{m}+\mathrm{2}} =…={x}_{{n}} =−\frac{{m}}{{n}−{m}} \\ $$$${Sw}=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{sin}^{\mathrm{5}} \:\theta_{{i}} ={m}×\mathrm{1}^{\mathrm{5}} +\left({n}−{m}\right)×\left(−\frac{{m}}{{n}−{m}}\right)^{\mathrm{5}} \\ $$$${S}={m}−\frac{{m}^{\mathrm{5}} }{\left({n}−{m}\right)^{\mathrm{4}} }={m}\left[\mathrm{1}−\left(\frac{{m}}{{n}−{m}}\right)^{\mathrm{4}} \right] \\ $$$$\frac{{dS}}{{dm}}=\mathrm{1}−\frac{\mathrm{5}{m}^{\mathrm{4}} }{\left({n}−{m}\right)^{\mathrm{4}} }−\frac{\mathrm{4}{m}^{\mathrm{5}} }{\left({n}−{m}\right)^{\mathrm{5}} }=\mathrm{0} \\ $$$${n}^{\mathrm{3}} −\mathrm{5}{n}^{\mathrm{2}} {m}+\mathrm{10}{nm}^{\mathrm{2}} −\mathrm{10}{m}^{\mathrm{3}} =\mathrm{0} \\ $$$$\mathrm{10}\left(\frac{{m}}{{n}}\right)^{\mathrm{3}} −\mathrm{10}\left(\frac{{m}}{{n}}\right)^{\mathrm{2}} +\mathrm{5}\left(\frac{{m}}{{n}}\right)−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\frac{{m}}{{n}}\approx\mathrm{0}.\mathrm{3773} \\ $$$$\Rightarrow{m}\approx\mathrm{0}.\mathrm{3773}{n} \\ $$$${S}_{{max}} \approx\mathrm{0}.\mathrm{3773}{n}\left[\mathrm{1}−\left(\frac{\mathrm{0}.\mathrm{3773}}{\mathrm{1}−\mathrm{0}.\mathrm{3773}}\right)^{\mathrm{4}} \right]\approx\mathrm{0}.\mathrm{3265}{n} \\ $$