Find-the-maximum-value-of-i-1-n-sin-5-i-with-i-1-n-sin-i-0- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 106941 by mr W last updated on 08/Aug/20 Findthemaximumvalueof∑ni=1sin5θiwith∑ni=1sinθi=0. Answered by mr W last updated on 08/Aug/20 letxi=sinθi−1⩽xi⩽1letx1=x2=…=xm=1,⇒xm+1=xm+2=…=xn=−mn−mSw=∑ni=1sin5θi=m×15+(n−m)×(−mn−m)5S=m−m5(n−m)4=m[1−(mn−m)4]dSdm=1−5m4(n−m)4−4m5(n−m)5=0n3−5n2m+10nm2−10m3=010(mn)3−10(mn)2+5(mn)−1=0⇒mn≈0.3773⇒m≈0.3773nSmax≈0.3773n[1−(0.37731−0.3773)4]≈0.3265n Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-172468Next Next post: Question-106943 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.