Menu Close

Find-the-maximum-value-of-the-function-f-defined-by-f-x-x-1-x-2-x-R-




Question Number 83850 by Rio Michael last updated on 06/Mar/20
Find the maximum value of the function f, defined by   f(x) = (x/(1+ x^2 )) , x∈R
Findthemaximumvalueofthefunctionf,definedbyf(x)=x1+x2,xR
Commented by mathmax by abdo last updated on 06/Mar/20
lim_(x→∞) f(x)=0    and f^′ (x)=((1+x^2 −x(2x))/((1+x^2 )^2 )) =((1−x^2 )/((1+x^2 )^2 ))  we have f^′ (x)≥0 ⇔ −1≤x≤1  x         −∞                       −1        0            1                  +∞                 f^′                             −                 +           +            −  f                 0        decr        −(1/2) inc0 inc(1/2)     dec     0  ⇒max_(x∈R)  f(x)=(1/2)
limxf(x)=0andf(x)=1+x2x(2x)(1+x2)2=1x2(1+x2)2wehavef(x)01x1x101+f++f0decr12inc0inc12dec0maxxRf(x)=12
Answered by john santu last updated on 06/Mar/20
(x^2 +1)y−x=0  yx^2 −x+y = 0   ⇒ Δ = 1−4.y^2  ≥0  (2y−1)(2y+1) ≤ 0  −(1/2) ≤ y ≤ (1/2)   { ((max = (1/2))),((min = −(1/2))) :}
(x2+1)yx=0yx2x+y=0Δ=14.y20(2y1)(2y+1)012y12{max=12min=12
Answered by mr W last updated on 07/Mar/20
f(x)=(x/(1+x^2 ))=(1/(x+(1/x)))  ≤(1/2) →max.  ≥(1/(−2))=−(1/2) →min.
f(x)=x1+x2=1x+1x12max.12=12min.

Leave a Reply

Your email address will not be published. Required fields are marked *