Menu Close

Find-the-middle-term-in-the-expansion-of-x-3-x-9-




Question Number 36166 by Rio Mike last updated on 29/May/18
 Find the middle term in   the expansion of  (x^  + (3/x))^9
$$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{middle}\:\mathrm{term}\:\mathrm{in}\: \\ $$$$\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\:\left(\mathrm{x}^{} \:+\:\frac{\mathrm{3}}{\mathrm{x}}\right)^{\mathrm{9}} \\ $$
Commented by abdo.msup.com last updated on 30/May/18
we have (x+(3/x))^9  = Σ_(k=0) ^9  C_9 ^k  x^k ((3/x))^(9−k)   = Σ_(k=0) ^9  C_9 ^k   3^(9−k)  x^(k +k−9)   = Σ_(k=0) ^9  C_9 ^k  3^(9−k)  x^(2k−9)    the middle   term is ax^5   so we must have  2k−9 =5 ⇒k =7  and the coeffcient  is 3^(9−7)  C_9 ^7   =9 .  ((9!)/(7! 2!)) = ((9.9.8)/2)  =81 ×4 =   324  so the coefficient is  354x^5  .  the coefficient is 324 x^5  .
$${we}\:{have}\:\left({x}+\frac{\mathrm{3}}{{x}}\right)^{\mathrm{9}} \:=\:\sum_{{k}=\mathrm{0}} ^{\mathrm{9}} \:{C}_{\mathrm{9}} ^{{k}} \:{x}^{{k}} \left(\frac{\mathrm{3}}{{x}}\right)^{\mathrm{9}−{k}} \\ $$$$=\:\sum_{{k}=\mathrm{0}} ^{\mathrm{9}} \:{C}_{\mathrm{9}} ^{{k}} \:\:\mathrm{3}^{\mathrm{9}−{k}} \:{x}^{{k}\:+{k}−\mathrm{9}} \\ $$$$=\:\sum_{{k}=\mathrm{0}} ^{\mathrm{9}} \:{C}_{\mathrm{9}} ^{{k}} \:\mathrm{3}^{\mathrm{9}−{k}} \:{x}^{\mathrm{2}{k}−\mathrm{9}} \:\:\:{the}\:{middle}\: \\ $$$${term}\:{is}\:{ax}^{\mathrm{5}} \:\:{so}\:{we}\:{must}\:{have} \\ $$$$\mathrm{2}{k}−\mathrm{9}\:=\mathrm{5}\:\Rightarrow{k}\:=\mathrm{7}\:\:{and}\:{the}\:{coeffcient} \\ $$$${is}\:\mathrm{3}^{\mathrm{9}−\mathrm{7}} \:{C}_{\mathrm{9}} ^{\mathrm{7}} \:\:=\mathrm{9}\:.\:\:\frac{\mathrm{9}!}{\mathrm{7}!\:\mathrm{2}!}\:=\:\frac{\mathrm{9}.\mathrm{9}.\mathrm{8}}{\mathrm{2}} \\ $$$$=\mathrm{81}\:×\mathrm{4}\:=\:\:\:\mathrm{324}\:\:{so}\:{the}\:{coefficient}\:{is} \\ $$$$\mathrm{354}{x}^{\mathrm{5}} \:. \\ $$$${the}\:{coefficient}\:{is}\:\mathrm{324}\:{x}^{\mathrm{5}} \:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *