Menu Close

find-the-minimum-and-maximum-value-of-5-f-3-where-f-8cos-15-sin-




Question Number 153870 by physicstutes last updated on 11/Sep/21
find the minimum and maximum value  of (5/(f(θ)+3)) where f(θ)=8cos θ−15 sin θ
findtheminimumandmaximumvalueof5f(θ)+3wheref(θ)=8cosθ15sinθ
Commented by mr W last updated on 12/Sep/21
there are no minimum and no  maximum. there are only local   minimum and local maximum.
therearenominimumandnomaximum.thereareonlylocalminimumandlocalmaximum.
Commented by physicstutes last updated on 12/Sep/21
why sir?
Commented by mr W last updated on 12/Sep/21
f(θ)=8cos θ−15 sin θ=17 cos (θ+α)  −17≤f(θ)≤17  that means f(θ) can be −3,  when f(θ)→−3^− , (5/(f(θ)+3))→−∞ ⇒no minimum  when f(θ)→−3^+ , (5/(f(θ)+3))→+∞ ⇒no maximum
f(θ)=8cosθ15sinθ=17cos(θ+α)17f(θ)17thatmeansf(θ)canbe3,whenf(θ)3,5f(θ)+3nominimumwhenf(θ)3+,5f(θ)+3+nomaximum
Answered by liberty last updated on 11/Sep/21
g(θ)=(5/(f(θ)+3))=(5/(17cos (θ−ϑ)+3))  ⇒17 cos (θ−ϑ)+3 = (5/(g(θ)))  ⇒17cos (θ−ϑ)=(5/(g(θ)))−3  we know that −17≤17cos (θ−ϑ)≤17  −17≤(5/(g(θ)))−3≤17  −14≤(5/(g(θ)))≤20  −((14)/5)≤(1/(g(θ)))≤4  (1/4)≤g(θ)<∞   minimum = (1/4)  has no maximum
g(θ)=5f(θ)+3=517cos(θϑ)+317cos(θϑ)+3=5g(θ)17cos(θϑ)=5g(θ)3weknowthat1717cos(θϑ)17175g(θ)317145g(θ)201451g(θ)414g(θ)<minimum=14hasnomaximum

Leave a Reply

Your email address will not be published. Required fields are marked *