Menu Close

find-the-minimum-and-maximum-value-of-the-quadratic-functions-a-4x-2-5x-1-b-x-2-x-3-c-x-2-x-4-6-hence-draw-each-draw-




Question Number 39607 by Rio Mike last updated on 08/Jul/18
find the   minimum and maximum value  of the quadratic functions  a) 4x^2  + 5x + 1  b) x + (2/x) = 3  c) x^2  − (x/4) + 6  hence draw each draw
findtheminimumandmaximumvalueofthequadraticfunctionsa)4x2+5x+1b)x+2x=3c)x2x4+6hencedraweachdraw
Answered by tanmay.chaudhury50@gmail.com last updated on 08/Jul/18
a)4x^2 +5x+1  4(x^2 +(5/4)x+(1/4))  4{(x^2 +2.x.(5/8)+((25)/(64))+(1/4)−((25)/(64)))}  4{(x+(5/8))^2 +((16−25)/(64))}  4{(x+(5/8))^2 +((−9)/(64))}  4(x+(5/8))^2 −(9/(16))  (x+(5/8))^2 >0  as the value of x increases so the value of   (x+(5/8))^2  increases...hence 4x^2 +5x+1 has no  maximum value..its minimum value is  ((−9)/(16)) when x=((−5)/8)  other method...  by using calculus  y=4x^2 +5x+1  (dy/dx)=8x+5  for min/max (dy/dx)=0   so x=−(5/8)  (d^2 y/dx^2 )=8   that means (d^2 y/dx^2 )>0  so 4x^2 +5x+1  has minimum value at x=−(5/8)  4.(((25)/(64)))+5(((−5)/8))+1  ((25)/(16))−((25)/8)+1    ((25−50+16)/(16))=((−9)/(16))
a)4x2+5x+14(x2+54x+14)4{(x2+2.x.58+2564+142564)}4{(x+58)2+162564}4{(x+58)2+964}4(x+58)2916(x+58)2>0asthevalueofxincreasessothevalueof(x+58)2increaseshence4x2+5x+1hasnomaximumvalue..itsminimumvalueis916whenx=58othermethodbyusingcalculusy=4x2+5x+1dydx=8x+5formin/maxdydx=0sox=58d2ydx2=8thatmeansd2ydx2>0so4x2+5x+1hasminimumvalueatx=584.(2564)+5(58)+12516258+12550+1616=916
Answered by tanmay.chaudhury50@gmail.com last updated on 08/Jul/18
c)y=((4x^2 −x+24)/4)  (1/4){(2x)^2 −2.2x.(1/4)+(1/(16))+24−(1/(16))}  (1/4){(2x−(1/4))^2 +((24×16−1)/(16))}  as the value of x increases so the value of  expression increases..so the expression has  no maximum value..  its minimum value is ((24×16−1)/(4×16))  when x=(1/8)  min value=((383)/(64))  when x=(1/8)  by calculus  y=x^2 −(x/4)+6  (dy/dx)=2x−(1/4)  for min/max (dy/dx)=0   so x=(1/8)  (d^2 y/dx^2 )=2        so  (d^2 y/dx^2 )>0  so the expression has min value at x=(1/8)  min valud ((1/8))^2 −(1/(32))+6  ((1−2+384)/(64)) =((383)/(64))
c)y=4x2x+24414{(2x)22.2x.14+116+24116}14{(2x14)2+24×16116}asthevalueofxincreasessothevalueofexpressionincreases..sotheexpressionhasnomaximumvalue..itsminimumvalueis24×1614×16whenx=18minvalue=38364whenx=18bycalculusy=x2x4+6dydx=2x14formin/maxdydx=0sox=18d2ydx2=2sod2ydx2>0sotheexpressionhasminvalueatx=18minvalud(18)2132+612+38464=38364
Answered by MJS last updated on 08/Jul/18
y=ax^2 +bx+c  zeros at x=−(b/(2a))±((√(b^2 −4ac))/(2a))  a>0 ⇒ min at x=−(b/(2a)); y=((−b^2 +4ac)/(4a^2 ))  a<0 ⇒ max at x=−(b/(2a)); y=((−b^2 +4ac)/(4a^2 ))  y=x^2 +px+q ⇒ min at x=−(p/2); y=((−p^2 +4q)/4)  zeros at x=−(p/2)±((√(p^2 −4q))/2)  y=−x^2 +px+q ⇒ max at x=(p/2); y=((p^2 +4q)/4)  zeros at x=(p/2)±((√(p^2 +4q))/2)
y=ax2+bx+czerosatx=b2a±b24ac2aa>0minatx=b2a;y=b2+4ac4a2a<0maxatx=b2a;y=b2+4ac4a2y=x2+px+qminatx=p2;y=p2+4q4zerosatx=p2±p24q2y=x2+px+qmaxatx=p2;y=p2+4q4zerosatx=p2±p2+4q2

Leave a Reply

Your email address will not be published. Required fields are marked *