find-the-minimum-and-maximum-value-of-the-quadratic-functions-a-4x-2-5x-1-b-x-2-x-3-c-x-2-x-4-6-hence-draw-each-draw- Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 39607 by Rio Mike last updated on 08/Jul/18 findtheminimumandmaximumvalueofthequadraticfunctionsa)4x2+5x+1b)x+2x=3c)x2−x4+6hencedraweachdraw Answered by tanmay.chaudhury50@gmail.com last updated on 08/Jul/18 a)4x2+5x+14(x2+54x+14)4{(x2+2.x.58+2564+14−2564)}4{(x+58)2+16−2564}4{(x+58)2+−964}4(x+58)2−916(x+58)2>0asthevalueofxincreasessothevalueof(x+58)2increases…hence4x2+5x+1hasnomaximumvalue..itsminimumvalueis−916whenx=−58othermethod…byusingcalculusy=4x2+5x+1dydx=8x+5formin/maxdydx=0sox=−58d2ydx2=8thatmeansd2ydx2>0so4x2+5x+1hasminimumvalueatx=−584.(2564)+5(−58)+12516−258+125−50+1616=−916 Answered by tanmay.chaudhury50@gmail.com last updated on 08/Jul/18 c)y=4x2−x+24414{(2x)2−2.2x.14+116+24−116}14{(2x−14)2+24×16−116}asthevalueofxincreasessothevalueofexpressionincreases..sotheexpressionhasnomaximumvalue..itsminimumvalueis24×16−14×16whenx=18minvalue=38364whenx=18bycalculusy=x2−x4+6dydx=2x−14formin/maxdydx=0sox=18d2ydx2=2sod2ydx2>0sotheexpressionhasminvalueatx=18minvalud(18)2−132+61−2+38464=38364 Answered by MJS last updated on 08/Jul/18 y=ax2+bx+czerosatx=−b2a±b2−4ac2aa>0⇒minatx=−b2a;y=−b2+4ac4a2a<0⇒maxatx=−b2a;y=−b2+4ac4a2y=x2+px+q⇒minatx=−p2;y=−p2+4q4zerosatx=−p2±p2−4q2y=−x2+px+q⇒maxatx=p2;y=p2+4q4zerosatx=p2±p2+4q2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-170673Next Next post: l-union-d-un-ferme-et-d-un-borne-est-il-compacte-quand-est-il-de-l-intersection- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.