Question Number 39607 by Rio Mike last updated on 08/Jul/18
$${find}\:{the}\: \\ $$$${minimum}\:{and}\:{maximum}\:{value} \\ $$$${of}\:{the}\:{quadratic}\:{functions} \\ $$$$\left.{a}\right)\:\mathrm{4}{x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\:\mathrm{1} \\ $$$$\left.{b}\right)\:{x}\:+\:\frac{\mathrm{2}}{{x}}\:=\:\mathrm{3} \\ $$$$\left.{c}\right)\:{x}^{\mathrm{2}} \:−\:\frac{{x}}{\mathrm{4}}\:+\:\mathrm{6} \\ $$$${hence}\:{draw}\:{each}\:{draw} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 08/Jul/18
$$\left.{a}\right)\mathrm{4}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{1} \\ $$$$\mathrm{4}\left({x}^{\mathrm{2}} +\frac{\mathrm{5}}{\mathrm{4}}{x}+\frac{\mathrm{1}}{\mathrm{4}}\right) \\ $$$$\mathrm{4}\left\{\left({x}^{\mathrm{2}} +\mathrm{2}.{x}.\frac{\mathrm{5}}{\mathrm{8}}+\frac{\mathrm{25}}{\mathrm{64}}+\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{25}}{\mathrm{64}}\right)\right\} \\ $$$$\mathrm{4}\left\{\left({x}+\frac{\mathrm{5}}{\mathrm{8}}\right)^{\mathrm{2}} +\frac{\mathrm{16}−\mathrm{25}}{\mathrm{64}}\right\} \\ $$$$\mathrm{4}\left\{\left({x}+\frac{\mathrm{5}}{\mathrm{8}}\right)^{\mathrm{2}} +\frac{−\mathrm{9}}{\mathrm{64}}\right\} \\ $$$$\mathrm{4}\left({x}+\frac{\mathrm{5}}{\mathrm{8}}\right)^{\mathrm{2}} −\frac{\mathrm{9}}{\mathrm{16}} \\ $$$$\left({x}+\frac{\mathrm{5}}{\mathrm{8}}\right)^{\mathrm{2}} >\mathrm{0} \\ $$$${as}\:{the}\:{value}\:{of}\:{x}\:{increases}\:{so}\:{the}\:{value}\:{of}\: \\ $$$$\left({x}+\frac{\mathrm{5}}{\mathrm{8}}\right)^{\mathrm{2}} \:{increases}…{hence}\:\mathrm{4}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{1}\:{has}\:{no} \\ $$$${maximum}\:{value}..{its}\:{minimum}\:{value}\:{is} \\ $$$$\frac{−\mathrm{9}}{\mathrm{16}}\:{when}\:{x}=\frac{−\mathrm{5}}{\mathrm{8}} \\ $$$$\boldsymbol{{other}}\:\boldsymbol{{method}}… \\ $$$${by}\:{using}\:{calculus} \\ $$$${y}=\mathrm{4}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{1} \\ $$$$\frac{{dy}}{{dx}}=\mathrm{8}{x}+\mathrm{5} \\ $$$${for}\:{min}/{max}\:\frac{{dy}}{{dx}}=\mathrm{0}\:\:\:{so}\:{x}=−\frac{\mathrm{5}}{\mathrm{8}} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{8}\:\:\:{that}\:{means}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }>\mathrm{0} \\ $$$${so}\:\mathrm{4}{x}^{\mathrm{2}} +\mathrm{5}{x}+\mathrm{1}\:\:{has}\:{minimum}\:{value}\:{at}\:{x}=−\frac{\mathrm{5}}{\mathrm{8}} \\ $$$$\mathrm{4}.\left(\frac{\mathrm{25}}{\mathrm{64}}\right)+\mathrm{5}\left(\frac{−\mathrm{5}}{\mathrm{8}}\right)+\mathrm{1} \\ $$$$\frac{\mathrm{25}}{\mathrm{16}}−\frac{\mathrm{25}}{\mathrm{8}}+\mathrm{1}\:\: \\ $$$$\frac{\mathrm{25}−\mathrm{50}+\mathrm{16}}{\mathrm{16}}=\frac{−\mathrm{9}}{\mathrm{16}} \\ $$$$ \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 08/Jul/18
$$\left.{c}\right){y}=\frac{\mathrm{4}{x}^{\mathrm{2}} −{x}+\mathrm{24}}{\mathrm{4}} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left\{\left(\mathrm{2}{x}\right)^{\mathrm{2}} −\mathrm{2}.\mathrm{2}{x}.\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{16}}+\mathrm{24}−\frac{\mathrm{1}}{\mathrm{16}}\right\} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left\{\left(\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} +\frac{\mathrm{24}×\mathrm{16}−\mathrm{1}}{\mathrm{16}}\right\} \\ $$$${as}\:{the}\:{value}\:{of}\:{x}\:{increases}\:{so}\:{the}\:{value}\:{of} \\ $$$${expression}\:{increases}..{so}\:{the}\:{expression}\:{has} \\ $$$${no}\:{maximum}\:{value}.. \\ $$$${its}\:{minimum}\:{value}\:{is}\:\frac{\mathrm{24}×\mathrm{16}−\mathrm{1}}{\mathrm{4}×\mathrm{16}}\:\:{when}\:{x}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$${min}\:{value}=\frac{\mathrm{383}}{\mathrm{64}}\:\:{when}\:{x}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\boldsymbol{{by}}\:\boldsymbol{{calculus}} \\ $$$${y}={x}^{\mathrm{2}} −\frac{{x}}{\mathrm{4}}+\mathrm{6} \\ $$$$\frac{{dy}}{{dx}}=\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$${for}\:{min}/{max}\:\frac{{dy}}{{dx}}=\mathrm{0}\:\:\:{so}\:{x}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$$\frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{y}}}{\boldsymbol{{dx}}^{\mathrm{2}} }=\mathrm{2}\:\:\:\:\:\:\:\:{so}\:\:\frac{\boldsymbol{{d}}^{\mathrm{2}} \boldsymbol{{y}}}{{dx}^{\mathrm{2}} }>\mathrm{0} \\ $$$${so}\:{the}\:{expression}\:{has}\:{min}\:{value}\:{at}\:{x}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$${min}\:{valud}\:\left(\frac{\mathrm{1}}{\mathrm{8}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{32}}+\mathrm{6} \\ $$$$\frac{\mathrm{1}−\mathrm{2}+\mathrm{384}}{\mathrm{64}}\:=\frac{\mathrm{383}}{\mathrm{64}} \\ $$
Answered by MJS last updated on 08/Jul/18
$${y}={ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${zeros}\:{at}\:{x}=−\frac{{b}}{\mathrm{2}{a}}\pm\frac{\sqrt{{b}^{\mathrm{2}} −\mathrm{4}{ac}}}{\mathrm{2}{a}} \\ $$$${a}>\mathrm{0}\:\Rightarrow\:{min}\:{at}\:{x}=−\frac{{b}}{\mathrm{2}{a}};\:{y}=\frac{−{b}^{\mathrm{2}} +\mathrm{4}{ac}}{\mathrm{4}{a}^{\mathrm{2}} } \\ $$$${a}<\mathrm{0}\:\Rightarrow\:{max}\:{at}\:{x}=−\frac{{b}}{\mathrm{2}{a}};\:{y}=\frac{−{b}^{\mathrm{2}} +\mathrm{4}{ac}}{\mathrm{4}{a}^{\mathrm{2}} } \\ $$$${y}={x}^{\mathrm{2}} +{px}+{q}\:\Rightarrow\:{min}\:{at}\:{x}=−\frac{{p}}{\mathrm{2}};\:{y}=\frac{−{p}^{\mathrm{2}} +\mathrm{4}{q}}{\mathrm{4}} \\ $$$${zeros}\:{at}\:{x}=−\frac{{p}}{\mathrm{2}}\pm\frac{\sqrt{{p}^{\mathrm{2}} −\mathrm{4}{q}}}{\mathrm{2}} \\ $$$${y}=−{x}^{\mathrm{2}} +{px}+{q}\:\Rightarrow\:{max}\:{at}\:{x}=\frac{{p}}{\mathrm{2}};\:{y}=\frac{{p}^{\mathrm{2}} +\mathrm{4}{q}}{\mathrm{4}} \\ $$$${zeros}\:{at}\:{x}=\frac{{p}}{\mathrm{2}}\pm\frac{\sqrt{{p}^{\mathrm{2}} +\mathrm{4}{q}}}{\mathrm{2}} \\ $$