Menu Close

Find-the-minimum-distance-between-C-f-C-g-C-f-y-2-4ax-C-g-x-2-y-2-24ay-128a-2-0-




Question Number 183324 by Acem last updated on 25/Dec/22
Find the minimum distance between C_f  , C_g    ; C_f  : y^2 = 4ax , C_g : x^2 + y^2 −24ay+ 128a^2 = 0
FindtheminimumdistancebetweenCf,Cg;Cf:y2=4ax,Cg:x2+y224ay+128a2=0
Commented by Acem last updated on 25/Dec/22
 No matter if  ∀a ∈ R^(∗+)  or R^(∗−)
NomatterifaR+orR
Answered by mr W last updated on 25/Dec/22
Commented by mr W last updated on 25/Dec/22
Commented by mr W last updated on 25/Dec/22
a≠0, assume a>0  y^2 =4ax  x^2 +(y−12a)^2 =(4a)^2   A(0,12a)  r=4a  say P((p^2 /(4a)), p)  tan θ=(dy/dx)=((2a)/y)=((2a)/p)=((p^2 /(4a))/(12a−p))  ⇒((p/a))^3 +8((p/a))−96=0  ⇒(p/a)=4  R=AP=(√(((p^2 /(4a)))^2 +(12a−p)^2 ))=4(√5)∣a∣  d_(min) =R−r=4((√5)−1)∣a∣
a0,assumea>0y2=4axx2+(y12a)2=(4a)2A(0,12a)r=4asayP(p24a,p)tanθ=dydx=2ay=2ap=p24a12ap(pa)3+8(pa)96=0pa=4R=AP=(p24a)2+(12ap)2=45admin=Rr=4(51)a
Commented by Acem last updated on 25/Dec/22
Thx Sir!
ThxSir!
Answered by Acem last updated on 25/Dec/22
 For a> 0   C_(circle) (0, 12a) , R= 4a   y= 2(√(a ))(√x) ^(The upper part of the parabola)    Assume that x= ak^2  then y= 2ak  , P(ak^2 , 2ak)∈ C_f    The normal △ passes through P and the center of the circle C  △: y+ xk = 2ak+ ak^3 = 12a_(x_c = 0)  ⇔ k^3 +2k−12=0   ⇒ (k−2)(k^2 +2k+6)_(No solution in R) = 0 ⇒ k= 2   ⇒P(4a, 4a) , T∈ C_g  , △     ∣TP∣_(min. Dis.) = (√((−4a)^2 +(12a−4a)^2 )) − 4a= 4a((√5)−1) uni.   ; ∣TP∣= ∣CP∣ − R
Fora>0Ccircle(0,12a),R=4ay=2axTheupperpartoftheparabolaAssumethatx=ak2theny=2ak,P(ak2,2ak)CfThenormalpassesthroughPandthecenterofthecircleC:y+xk=2ak+ak3=12axc=0k3+2k12=0(k2)(k2+2k+6)NosolutioninR=0k=2P(4a,4a),TCg,TPmin.Dis.=(4a)2+(12a4a)24a=4a(51)uni.;TP∣=CPR

Leave a Reply

Your email address will not be published. Required fields are marked *