Menu Close

Find-the-minimum-value-of-a-b-c-2-where-a-b-and-c-are-all-not-equal-integers-and-1-is-a-cube-root-of-unity-




Question Number 20551 by Tinkutara last updated on 28/Aug/17
Find the minimum value of  ∣a + bω + cω^2 ∣, where a, b and c are all  not equal integers and ω(≠1) is a cube  root of unity.
Findtheminimumvalueofa+bω+cω2,wherea,bandcareallnotequalintegersandω(1)isacuberootofunity.
Commented by ajfour last updated on 28/Aug/17
Commented by ajfour last updated on 28/Aug/17
let d be the minimum magnitude.  (d/(sin 60°))+2((b/2))=a    ...(i)  and  (d/(tan 60°))+b=c    ...(ii)  ⇒    ((2d)/( (√3)))=a−b   and   (d/( (√3)))=c−b    d_(min) =(√3)(c−b) = (√3)  as c, b are unequal integers; their  minimum difference is 1 .
letdbetheminimummagnitude.dsin60°+2(b2)=a(i)anddtan60°+b=c(ii)2d3=abandd3=cbdmin=3(cb)=3asc,bareunequalintegers;theirminimumdifferenceis1.
Commented by Tinkutara last updated on 28/Aug/17
You all got (√3), but in my book answer  is explained and they got 1. Can you  find the error in my book?
Youallgot3,butinmybookanswerisexplainedandtheygot1.Canyoufindtheerrorinmybook?
Commented by Tinkutara last updated on 28/Aug/17
Commented by dioph last updated on 28/Aug/17
I guess we assumed a≠b, a≠c and  b≠c, when in fact the book says  two of them can be equal (just not  all of them at once)
Iguessweassumedab,acandbc,wheninfactthebooksaystwoofthemcanbeequal(justnotallofthematonce)
Commented by Tinkutara last updated on 28/Aug/17
So 1 is correct?
So1iscorrect?
Commented by ajfour last updated on 28/Aug/17
question states ′all not equal′  so 1 is true.for example,  a−1=b=c.
questionstatesallnotequalso1istrue.forexample,a1=b=c.
Commented by Tinkutara last updated on 28/Aug/17
Thank you very much ajfour Sir!
ThankyouverymuchajfourSir!
Answered by dioph last updated on 28/Aug/17
∣(a−(1/2)b−(1/2)c)+i(((√3)/2)b−((√3)/2)c)∣=  =(√((a−(1/2)b−(1/2)c)^2 +(((√3)/2)b−((√3)/2)c)^2 ))=  =(√(a^2 +(1/4)b^2 +(1/4)c^2 −ab−ac+(1/2)bc+(3/4)b^2 +(3/4)c^2 −(3/2)bc))=  =(√(a^2 +b^2 +c^2 −ab−ac−bc))  min((√(a^2 +b^2 +c^2 −ab−ac−bc)))=  = (√(min(a^2 +b^2 +c^2 −ab−ac−bc)))  a,b,c are interchangeable, so  assume a<b<c.  Case 1: (a,b,c)=(b−1,b,b+1)  (b−1)^2 +b^2 +(b+1)^2 −(b(b−1)+(b−1)(b+1)+b(b+1))=  = b^2 −2b+1+b^2 +b^2 +2b+1−(b^2 −b+b^2 −1+b^2 +b)=  = 3b^2 +2−(3b^2 −1) = 3.  Case 2: (a,b,c)≠(k−1,k,k+1)  Case 2.1: a < b−1  a−b−c < (b−1)−b−c  a(a−b−c) > (b−1)((b−1)−b−c)  a^2 −(ab+ac) > (b−1)^2 −(b−1)(b+c)  a^2 +b^2 +c^2 −(ab+ac+bc) > (b−1)^2 +b^2 +c^2 −(b(b−1)+c(b−1)+bc)  (a,b,c) is not optimal.  Case 2.2: c > b+1  c−a−b > (b+1)−a−b  c(c−a−b) > (b+1)((b+1)−a−b)  c^2 −(ac+bc) > (b+1)^2 −(b+1)(a+b)  a^2 +b^2 +c^2 −(ab+ac+bc) > a^2 +b^2 +(b+1)^2 −(ab+a(b+1)+b(b+1))  (a,b,c) is not optimal.  Therefore, the answer is (√3).
(a12b12c)+i(32b32c)∣==(a12b12c)2+(32b32c)2==a2+14b2+14c2abac+12bc+34b2+34c232bc==a2+b2+c2abacbcmin(a2+b2+c2abacbc)==min(a2+b2+c2abacbc)a,b,careinterchangeable,soassumea<b<c.Case1:(a,b,c)=(b1,b,b+1)(b1)2+b2+(b+1)2(b(b1)+(b1)(b+1)+b(b+1))==b22b+1+b2+b2+2b+1(b2b+b21+b2+b)==3b2+2(3b21)=3.Case2:(a,b,c)(k1,k,k+1)Case2.1:a<b1abc<(b1)bca(abc)>(b1)((b1)bc)a2(ab+ac)>(b1)2(b1)(b+c)a2+b2+c2(ab+ac+bc)>(b1)2+b2+c2(b(b1)+c(b1)+bc)(a,b,c)isnotoptimal.Case2.2:c>b+1cab>(b+1)abc(cab)>(b+1)((b+1)ab)c2(ac+bc)>(b+1)2(b+1)(a+b)a2+b2+c2(ab+ac+bc)>a2+b2+(b+1)2(ab+a(b+1)+b(b+1))(a,b,c)isnotoptimal.Therefore,theansweris3.
Commented by Tinkutara last updated on 28/Aug/17
Thank you very much Sir! This  question can also be asked where all  are unequal.
ThankyouverymuchSir!Thisquestioncanalsobeaskedwhereallareunequal.

Leave a Reply

Your email address will not be published. Required fields are marked *