Menu Close

Find-the-minimum-value-of-f-x-9tan-2-4cot-2-




Question Number 50996 by rahul 19 last updated on 23/Dec/18
Find the minimum value of  f(x)= 9tan^2 θ+4cot^2 θ ?
Findtheminimumvalueoff(x)=9tan2θ+4cot2θ?
Commented by rahul 19 last updated on 23/Dec/18
f(x)= (3tanθ)^2 +(2cotθ)^2 +12−12           = (3tanθ+2cotθ)^2 −12  ⇒ Minimum Value = −12.
f(x)=(3tanθ)2+(2cotθ)2+1212=(3tanθ+2cotθ)212MinimumValue=12.
Commented by rahul 19 last updated on 23/Dec/18
Where am i wrong?  Ans is +12.
Whereamiwrong?Ansis+12.
Commented by mr W last updated on 23/Dec/18
f(x)=(3tanθ+2cotθ)^2 −12 is correct,  but you can not say minimum of f(x)  is −12, since the minimum of  (3tanθ+2cotθ)^2  is not zero! in fact  the minimum of (3tanθ+2cotθ)^2  is 24,  therefore the minimum of f(x) is  24−12=12. so be careful when using  the form f(x)=(....)^2 +c, its mininum  is c only if the minimum of (....)^2  is  zero! look at an example:  f(x)=(x^2 +2x+3)^2 −1  its minimum is not −1, since minimum of  (x^2 +2x+3)^2  is not zero, but 4, because  (x^2 +2x+3)^2 =[(x+1)^2 +2]^2 ≥2^2 =4. i.e.  the minimum of f(x) is 3.  therefore when you are using  f(x)=(....)^2 +c, you should arrange the  formula in the way that (....)^2  can be  zero, only then the minimum of f(x)  is c.  this is what you have had done in your  example:  f(x)= (3tanθ)^2 +(2cotθ)^2 −12+12           = (3tanθ−2cotθ)^2 +12  ⇒ Minimum Value = 12.
f(x)=(3tanθ+2cotθ)212iscorrect,butyoucannotsayminimumoff(x)is12,sincetheminimumof(3tanθ+2cotθ)2isnotzero!infacttheminimumof(3tanθ+2cotθ)2is24,thereforetheminimumoff(x)is2412=12.sobecarefulwhenusingtheformf(x)=(.)2+c,itsmininumisconlyiftheminimumof(.)2iszero!lookatanexample:f(x)=(x2+2x+3)21itsminimumisnot1,sinceminimumof(x2+2x+3)2isnotzero,but4,because(x2+2x+3)2=[(x+1)2+2]222=4.i.e.theminimumoff(x)is3.thereforewhenyouareusingf(x)=(.)2+c,youshouldarrangetheformulainthewaythat(.)2canbezero,onlythentheminimumoff(x)isc.thisiswhatyouhavehaddoneinyourexample:f(x)=(3tanθ)2+(2cotθ)212+12=(3tanθ2cotθ)2+12MinimumValue=12.
Commented by rahul 19 last updated on 23/Dec/18
Sir, how min. value of   (3tanθ+2cotθ)^2 = 24 ?
Sir,howmin.valueof(3tanθ+2cotθ)2=24?
Commented by mr W last updated on 23/Dec/18
(3x+(2/x))^2 ≥(2(√(3x×(2/x))))^2 =(2(√6))^2 =24
(3x+2x)2(23x×2x)2=(26)2=24
Commented by rahul 19 last updated on 23/Dec/18
Thank you Sir!:)
ThankyouSir!:)
Commented by tanmay.chaudhury50@gmail.com last updated on 23/Dec/18
(3x+(2/x))^2 =(3x−(2/x))^2 +4×3x×(2/x)  (3x−(2/x))^2  always +ve   so for min (3x−(2/x))^2 =0  hence min value =4×3x×(2/x)=24
(3x+2x)2=(3x2x)2+4×3x×2x(3x2x)2always+vesoformin(3x2x)2=0henceminvalue=4×3x×2x=24
Commented by 951172235v last updated on 04/Feb/19
A.M.≥ G.M.  ((9tan^2 Θ+4cot^2 Θ)/2) ≥ (√((9tan^2 Θ)(4cot^2 Θ)))  9tan^2 Θ+4cot^2 Θ≥12  min. of f(x)=12
A.M.G.M.9tan2Θ+4cot2Θ2(9tan2Θ)(4cot2Θ)9tan2Θ+4cot2Θ12min.off(x)=12
Answered by tanmay.chaudhury50@gmail.com last updated on 23/Dec/18
(3x)^2 +((2/x))^2   =(3x−(2/x))^2 +12  (3x−(2/x))^2 =alaways +ve  so f(x) is minimum when (3x−(2/x))^2 =0  3x^2 =2 at x=±(√(2/3))   f(x) min value 12
(3x)2+(2x)2=(3x2x)2+12(3x2x)2=alaways+vesof(x)isminimumwhen(3x2x)2=03x2=2atx=±23f(x)minvalue12
Commented by rahul 19 last updated on 23/Dec/18
Thank you Sir!
ThankyouSir!
Commented by tanmay.chaudhury50@gmail.com last updated on 23/Dec/18
most welcome...
mostwelcome

Leave a Reply

Your email address will not be published. Required fields are marked *