Question Number 110704 by Aina Samuel Temidayo last updated on 30/Aug/20

Answered by mr W last updated on 30/Aug/20

Answered by floor(10²Eta[1]) last updated on 30/Aug/20

Commented by Aina Samuel Temidayo last updated on 30/Aug/20

Commented by Aina Samuel Temidayo last updated on 30/Aug/20

Commented by mnjuly1970 last updated on 30/Aug/20
![if (min =2) then : ((n^2 +1)/n) =(n/(n^2 +1))⇒n^4 +2n^2 +1=n^2 n^4 +n^2 +1=0⇒n∉R solution: F(n)=(n+^([min]]) (1/n)) +((1^([max]) /(n +(1/n)))) min(F(n))=2+(1/2) =(5/2) ...M.N.july 1970#](https://www.tinkutara.com/question/Q110718.png)
Commented by Aina Samuel Temidayo last updated on 30/Aug/20

Answered by $@y@m last updated on 30/Aug/20
![Let y=((n^2 +1)/n)+(n/(n^2 +1)),n>0 ⇒y=(((n^2 +1)^2 +n^2 )/(n(n^2 +1))) ⇒y=((n^4 +3n^2 +1)/(n^3 +n)) (dy/dn)=(((n^3 +n)(4n^3 +6n)−(n^4 +3n^2 +1)(3n^2 +1))/((n^3 +n)^2 )) (dy/dn)=((4n^6 +10n^4 +6n^2 −(3n^6 +10n^4 +6n^2 +1))/((n^3 +n)^2 )) (dy/dn)=((n^6 −1)/((n^3 +n)^2 )) ....(1) For maxima or minima, (dy/dn)=0 ⇒n^6 −1=0 ⇒n=1 Now, (d^2 y/dn^2 )=(((n^3 +n)^2 6n^5 −(n^6 −1).2(n^3 +n)(3n^2 +1))/((n^3 +n)^4 )) [(d^2 y/dn_( ) ^2 )]_(at n=1) =((4.6.1−0)/2^4 )=(3/2)>0 ∴ y is minimum at n=1 ⇒y_(min) =((1^2 +1)/1)+(1/(1^2 +1))=2+(1/2)=(5/2)](https://www.tinkutara.com/question/Q110732.png)
Commented by Aina Samuel Temidayo last updated on 03/Sep/20
