Menu Close

Find-the-minimum-value-of-n-2-1-n-n-n-2-1-n-gt-0-




Question Number 110704 by Aina Samuel Temidayo last updated on 30/Aug/20
Find the minimum value of  ((n^2 +1)/n)+(n/(n^2 +1)),n>0
Findtheminimumvalueofn2+1n+nn2+1,n>0
Answered by mr W last updated on 30/Aug/20
((n^2 +1)/n)+(n/(n^2 +1))  =(n+(1/n))+(1/((n+(1/n))))  n+(1/n)≥2(√(n×(1/n)))=2  so the question is to find the minimum  of function f(x)=x+(1/x) for x≥2.  f′(x)=1−(1/x^2 )>0 for x>1  that means f(x) is strictly increasing  for x>1, so for x≥2 we have  f(x)_(min) =f(2)=2+(1/2)=(5/2).
n2+1n+nn2+1=(n+1n)+1(n+1n)n+1n2n×1n=2sothequestionistofindtheminimumoffunctionf(x)=x+1xforx2.f(x)=11x2>0forx>1thatmeansf(x)isstrictlyincreasingforx>1,soforx2wehavef(x)min=f(2)=2+12=52.
Answered by floor(10²Eta[1]) last updated on 30/Aug/20
with AM−GM inequality:  ((((n^2 +1)/n)+(n/(n^2 +1)))/2)≥(√((((n^2 +1)/n))((n/(n^2 +1)))))=1  ⇒((n^2 +1)/n)+(n/(n^2 +1))≥2  the minimum value is 2.
withAMGMinequality:n2+1n+nn2+12(n2+1n)(nn2+1)=1n2+1n+nn2+12theminimumvalueis2.
Commented by Aina Samuel Temidayo last updated on 30/Aug/20
Thanks but the answer is 5/2. I was  also surprised when I found out it was  5/2.
Thanksbuttheansweris5/2.IwasalsosurprisedwhenIfoundoutitwas5/2.
Commented by Aina Samuel Temidayo last updated on 30/Aug/20
I don′t know why AM−GM doesn′t  work here.
IdontknowwhyAMGMdoesntworkhere.
Commented by mnjuly1970 last updated on 30/Aug/20
if (min =2) then :    ((n^2 +1)/n) =(n/(n^2 +1))⇒n^4 +2n^2 +1=n^2   n^4 +n^2 +1=0⇒n∉R    solution: F(n)=(n+^([min]]) (1/n)) +((1^([max]) /(n +(1/n))))                 min(F(n))=2+(1/2) =(5/2)             ...M.N.july 1970#
if(min=2)then:n2+1n=nn2+1n4+2n2+1=n2n4+n2+1=0nRsolution:F(n)=(n+[min]]1n)+(1[max]n+1n)min(F(n))=2+12=52You can't use 'macro parameter character #' in math mode
Commented by Aina Samuel Temidayo last updated on 30/Aug/20
Thanks.
Thanks.
Answered by $@y@m last updated on 30/Aug/20
Let y=((n^2 +1)/n)+(n/(n^2 +1)),n>0  ⇒y=(((n^2 +1)^2 +n^2 )/(n(n^2 +1)))  ⇒y=((n^4 +3n^2 +1)/(n^3 +n))  (dy/dn)=(((n^3 +n)(4n^3 +6n)−(n^4 +3n^2 +1)(3n^2 +1))/((n^3 +n)^2 ))  (dy/dn)=((4n^6 +10n^4 +6n^2 −(3n^6 +10n^4 +6n^2 +1))/((n^3 +n)^2 ))  (dy/dn)=((n^6 −1)/((n^3 +n)^2 ))   ....(1)  For maxima or minima,  (dy/dn)=0  ⇒n^6 −1=0  ⇒n=1  Now, (d^2 y/dn^2 )=(((n^3 +n)^2 6n^5 −(n^6 −1).2(n^3 +n)(3n^2 +1))/((n^3 +n)^4 ))   [(d^2 y/dn_(  ) ^2 )]_(at n=1) =((4.6.1−0)/2^4 )=(3/2)>0  ∴ y is minimum at n=1  ⇒y_(min) =((1^2 +1)/1)+(1/(1^2 +1))=2+(1/2)=(5/2)
Lety=n2+1n+nn2+1,n>0y=(n2+1)2+n2n(n2+1)y=n4+3n2+1n3+ndydn=(n3+n)(4n3+6n)(n4+3n2+1)(3n2+1)(n3+n)2dydn=4n6+10n4+6n2(3n6+10n4+6n2+1)(n3+n)2dydn=n61(n3+n)2.(1)Formaximaorminima,dydn=0n61=0n=1Now,d2ydn2=(n3+n)26n5(n61).2(n3+n)(3n2+1)(n3+n)4[d2ydn2]atn=1=4.6.1024=32>0yisminimumatn=1ymin=12+11+112+1=2+12=52
Commented by Aina Samuel Temidayo last updated on 03/Sep/20
Thanks.
Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *