Question Number 56356 by Tawa1 last updated on 15/Mar/19
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\mathrm{F}\left(\mathrm{x}\right)\:=\:\:\mathrm{log}_{\mathrm{e}} \mathrm{x}\:\:−\:\:\mathrm{x}\:\:\:\mathrm{for}\:\:\:\mathrm{x}\:>\:\mathrm{0}. \\ $$$$\:\:\mathrm{Hence}\:\mathrm{show}\:\mathrm{that}:\:\:\:\mathrm{log}_{\mathrm{e}} \mathrm{x}\:\:\leqslant\:\:\mathrm{x}\:−\:\mathrm{1}.\:\:\mathrm{For}\:\mathrm{all}\:\:\:\mathrm{x}\:>\:\mathrm{0} \\ $$
Commented by Tawa1 last updated on 15/Mar/19
Answered by kaivan.ahmadi last updated on 15/Mar/19
$${f}\left({x}\right)={lnx}−{x}\Rightarrow{f}'\left({x}\right)=\frac{\mathrm{1}}{{x}}−\mathrm{1}=\mathrm{0}\Rightarrow{x}=\mathrm{1} \\ $$$${if}\:{x}<\mathrm{1}\Rightarrow\frac{\mathrm{1}}{{x}}>\mathrm{1}\Rightarrow\frac{\mathrm{1}}{{x}}−\mathrm{1}>\mathrm{0}\Rightarrow{f}'\left({x}\right)>\mathrm{0} \\ $$$${somillarly}\:{if}\:{x}>\mathrm{1}\Rightarrow{f}'\left({x}\right)<\mathrm{0} \\ $$$$\Rightarrow{f}\left(\mathrm{1}\right)=−\mathrm{1}\:{is}\:{maximum}\Rightarrow \\ $$$${f}\left({x}\right)\leqslant−\mathrm{1}\Rightarrow{lnx}−{x}\leqslant−\mathrm{1}\Rightarrow \\ $$$${lnx}\leqslant{x}−\mathrm{1} \\ $$$$ \\ $$$$ \\ $$
Commented by Tawa1 last updated on 15/Mar/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Mar/19
$$\frac{{df}\left({x}\right)}{{dx}}=\frac{\mathrm{1}}{{x}}−\mathrm{1} \\ $$$$\frac{{d}^{\mathrm{2}} {f}}{{dx}^{\mathrm{2}} }=\frac{−\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$${for}\:{min}/{max}\:\:\:\frac{{df}}{{dx}}=\mathrm{0} \\ $$$${so}\:\frac{\mathrm{1}}{{x}}−\mathrm{1}=\mathrm{0} \\ $$$${x}=\mathrm{1} \\ $$$${at}\:{x}=\mathrm{1}\:\frac{{d}^{\mathrm{2}} {f}}{{dx}^{\mathrm{2}} }=\frac{−\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }<\mathrm{0} \\ $$$${so}\:\:{no}\:{minimum}\:\:{value}… \\ $$$${for}\:{min}\:\frac{{d}^{\mathrm{2}} {f}}{{dx}^{\mathrm{2}} }>\mathrm{0}\:\:\:{and}\:\:{for}\:{max}\:\frac{{d}^{\mathrm{2}} {f}}{{dx}^{\mathrm{2}} }<\mathrm{0} \\ $$$${so}\:{at}\:{x}=\mathrm{1}\:{f}\left({x}\right)=\mid{lnx}−{x}\mid_{{x}=\mathrm{1}} \rightarrow−\mathrm{1} \\ $$$$\:{value}=−\mathrm{1} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Mar/19
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Mar/19
$${from}\:{graph}\:{of}\:{lnx}−{x}\:{it}\:{is}\:{clear}\:{that}\:{f}\left({x}\right)\:{hss}\:{max}\:{value}\:{at}\:{x}=\mathrm{1}\:{and}\:{that}\:{value}\:{is}\:−\mathrm{1} \\ $$
Commented by Tawa1 last updated on 15/Mar/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{effort} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Mar/19
$${if}\:\frac{{dg}}{{dx}}<\frac{{dh}}{{dx}} \\ $$$${then}\:{g}\left({x}\right)<{h}\left({x}\right) \\ $$$${now}\:\frac{{d}}{{dx}}\left({lnx}\right)=\frac{\mathrm{1}}{{x}} \\ $$$$\frac{{d}}{{dx}}\left({x}−\mathrm{1}\right)=\mathrm{1} \\ $$$${now}\:\frac{\mathrm{1}}{{x}}−\mathrm{1} \\ $$$$\frac{\mathrm{1}−{x}}{{x}}<\mathrm{0}\:{when}\:{x}>\mathrm{1} \\ $$$${so}\:{lnx}<\left({x}−\mathrm{1}\right)\:\:{when}\:{x}>\mathrm{1} \\ $$$${at}\:{x}=\mathrm{1}\:\:{i},{e}\:{ln}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$$\left(\mathrm{1}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({lnx}\right)_{{x}=\mathrm{1}} =\left({x}−\mathrm{1}\right)_{{x}=\mathrm{1}} \\ $$$${when}\:\mathrm{1}>{x}>\mathrm{0}\:\: \\ $$$${lnx}=−{ve}\:\:\:\:\left({x}−\mathrm{1}\right)=−{ve} \\ $$$${and}\:\:\:\mid{lnx}\mid>\mid\left({x}−\mathrm{1}\right)\mid \\ $$$${so}\:{lnx}<\left({x}−\mathrm{1}\right)\:{when}\:\mathrm{1}>{x}>\mathrm{0} \\ $$$${so}\:{lnx}<\left({x}−\mathrm{1}\right)\:{when}\:{x}>\mathrm{0} \\ $$$$ \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Mar/19
Commented by Tawa1 last updated on 15/Mar/19
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$