Menu Close

Find-the-minimum-value-of-the-function-F-x-log-e-x-x-for-x-gt-0-Hence-show-that-log-e-x-x-1-For-all-x-gt-0-




Question Number 56356 by Tawa1 last updated on 15/Mar/19
Find the minimum value of the function F(x) =  log_e x  −  x   for   x > 0.    Hence show that:   log_e x  ≤  x − 1.  For all   x > 0
FindtheminimumvalueofthefunctionF(x)=logexxforx>0.Henceshowthat:logexx1.Forallx>0
Commented by Tawa1 last updated on 15/Mar/19
Answered by kaivan.ahmadi last updated on 15/Mar/19
f(x)=lnx−x⇒f′(x)=(1/x)−1=0⇒x=1  if x<1⇒(1/x)>1⇒(1/x)−1>0⇒f′(x)>0  somillarly if x>1⇒f′(x)<0  ⇒f(1)=−1 is maximum⇒  f(x)≤−1⇒lnx−x≤−1⇒  lnx≤x−1
f(x)=lnxxf(x)=1x1=0x=1ifx<11x>11x1>0f(x)>0somillarlyifx>1f(x)<0f(1)=1ismaximumf(x)1lnxx1lnxx1
Commented by Tawa1 last updated on 15/Mar/19
God bless you sir
Godblessyousir
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Mar/19
((df(x))/dx)=(1/x)−1  (d^2 f/dx^2 )=((−1)/x^2 )  for min/max   (df/dx)=0  so (1/x)−1=0  x=1  at x=1 (d^2 f/dx^2 )=((−1)/1^2 )<0  so  no minimum  value...  for min (d^2 f/dx^2 )>0   and  for max (d^2 f/dx^2 )<0  so at x=1 f(x)=∣lnx−x∣_(x=1) →−1   value=−1
df(x)dx=1x1d2fdx2=1x2formin/maxdfdx=0so1x1=0x=1atx=1d2fdx2=112<0sonominimumvalueformind2fdx2>0andformaxd2fdx2<0soatx=1f(x)=∣lnxxx=11value=1
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Mar/19
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Mar/19
from graph of lnx−x it is clear that f(x) hss max value at x=1 and that value is −1
fromgraphoflnxxitisclearthatf(x)hssmaxvalueatx=1andthatvalueis1
Commented by Tawa1 last updated on 15/Mar/19
God bless you sir. i appreciate your effort
Godblessyousir.iappreciateyoureffort
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Mar/19
if (dg/dx)<(dh/dx)  then g(x)<h(x)  now (d/dx)(lnx)=(1/x)  (d/dx)(x−1)=1  now (1/x)−1  ((1−x)/x)<0 when x>1  so lnx<(x−1)  when x>1  at x=1  i,e ln(1)=0  (1−1)=0  (lnx)_(x=1) =(x−1)_(x=1)   when 1>x>0    lnx=−ve    (x−1)=−ve  and   ∣lnx∣>∣(x−1)∣  so lnx<(x−1) when 1>x>0  so lnx<(x−1) when x>0
ifdgdx<dhdxtheng(x)<h(x)nowddx(lnx)=1xddx(x1)=1now1x11xx<0whenx>1solnx<(x1)whenx>1atx=1i,eln(1)=0(11)=0(lnx)x=1=(x1)x=1when1>x>0lnx=ve(x1)=veandlnx∣>∣(x1)solnx<(x1)when1>x>0solnx<(x1)whenx>0
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Mar/19
Commented by Tawa1 last updated on 15/Mar/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *