Menu Close

Find-the-minimum-value-of-x-2-y-2-z-2-with-the-condition-ax-by-cz-p-




Question Number 15741 by ajfour last updated on 13/Jun/17
Find the minimum value  of    x^2 +y^2 +z^2 , with the condition   ax+by+cz=p .
Findtheminimumvalueofx2+y2+z2,withtheconditionax+by+cz=p.
Answered by mrW1 last updated on 13/Jun/17
(√(x^2 +y^2 +z^2 )) is the distance of a point  (x,y,z) on the plane ax+by+cz−p=0  to the origin (0,0,0).     since the distance from (0,0,0) to the plane  ax+by+cz−p is  d=((∣p∣)/( (√(a^2 +b^2 +c^2 ))))    (√(x^2 +y^2 +z^2 )) ≥d  x^2 +y^2 +z^2 ≥d^2 =(p^2 /(a^2 +b^2 +c^2 ))
x2+y2+z2isthedistanceofapoint(x,y,z)ontheplaneax+by+czp=0totheorigin(0,0,0).sincethedistancefrom(0,0,0)totheplaneax+by+czpisd=pa2+b2+c2x2+y2+z2dx2+y2+z2d2=p2a2+b2+c2
Commented by ajfour last updated on 13/Jun/17
good viewpoint sir, i thought  it would again involve partial  derivatives.
goodviewpointsir,ithoughtitwouldagaininvolvepartialderivatives.
Commented by mrW1 last updated on 13/Jun/17
Solution in conventional way:    z=((p−(ax+by))/c)=p′−(a′x+b′y)  with p′=(p/c), a′=(a/c), b′=(b/c)    S=x^2 +y^2 +z^2 =x^2 +y^2 +p′^2 −2p′(a′x+b′y)+(a′x+b′y)^2   =x^2 +y^2 +p′^2 −2p′(a′x+b′y)+a′^2 x^2 +b′^2 y^2 +2a′b′xy  =(1+a′^2 )x^2 +(1+b′^2 )y^2 +2a′b′xy−2p′a′x−2p′b′y+p′^2     (∂S/∂x)=2(1+a′^2 )x+2a′b′y−2p′a′=0  ⇒(1+a′^2 )x+a′b′y=p′a′    (∂S/∂y)=2(1+b′^2 )y+2a′b′x−2p′b′=0  ⇒(1+b′^2 )y+a′b′x=p′b′    ⇒y=((p′b′)/((1+b′^2 )))−((a′b′)/((1+b′^2 )))x  ⇒(1+a′^2 )x−(((a′b′)^2 )/((1+b′^2 )))x=p′a′−((p′a′b′^2 )/((1+b′^2 )))  ⇒(((1+a′^2 )(1+b′^2 )−(a′b′)^2 )/((1+b′^2 )))x=((p′a′)/((1+b′^2 )))  ⇒x=((p′a′)/((1+a′^2 )(1+b′^2 )−(a′b′)^2 ))=((p′a′)/(1+a′^2 +b′^2 ))  ⇒y=((p′b′)/((1+a′^2 )(1+b′^2 )−(a′b′)^2 ))=((p′b′)/(1+a′^2 +b′^2 ))    S_(min) =(1+a′^2 )(((p′a′)/(1+a′^2 +b′^2 )))^2 +(1+b′^2 )(((p′b′)/(1+a′^2 +b′^2 )))^2 +2a′b′(((p′a′)/(1+a′^2 +b′^2 )))(((p′b′)/(1+a′^2 +b′^2 )))−2p′a′(((p′a′)/(1+a′^2 +b′^2 )))−2p′b′(((p′b′)/(1+a′^2 +b′^2 )))+p′^2   =(1/((1+a′^2 +b′^2 )^2 ))[(1+a′^2 )p′^2 a′^2 +(1+b′^2 )p′^2 b′^2 +2p′^2 a′^2 b′^2 −2p′^2 (a′^2 +b′^2 )(1+a′^2 +b′^2 )+p′^2 (1+a′^2 +b′^2 )^2 ]  =((p′^2 )/((1+a′^2 +b′^2 )^2 ))[(a′^2 +b′^2 )(1+a′^2 +b′^2 )+(1−a′^2 −b′^2 )(1+a′^2 +b′^2 )]  =((p′^2 )/((1+a′^2 +b′^2 )^2 ))[a′^2 +b′^2 +1−a′^2 −b′^2 ](1+a′^2 +b′^2 )  =((p′^2 )/(1+a′^2 +b′^2 ))  =((p^2 /c^2 )/(1+(a^2 /c^2 )+(b^2 /c^2 )))=(p^2 /(a^2 +b^2 +c^2 ))
Solutioninconventionalway:z=p(ax+by)c=p(ax+by)withp=pc,a=ac,b=bcS=x2+y2+z2=x2+y2+p22p(ax+by)+(ax+by)2=x2+y2+p22p(ax+by)+a2x2+b2y2+2abxy=(1+a2)x2+(1+b2)y2+2abxy2pax2pby+p2Sx=2(1+a2)x+2aby2pa=0(1+a2)x+aby=paSy=2(1+b2)y+2abx2pb=0(1+b2)y+abx=pby=pb(1+b2)ab(1+b2)x(1+a2)x(ab)2(1+b2)x=papab2(1+b2)(1+a2)(1+b2)(ab)2(1+b2)x=pa(1+b2)x=pa(1+a2)(1+b2)(ab)2=pa1+a2+b2y=pb(1+a2)(1+b2)(ab)2=pb1+a2+b2Smin=(1+a2)(pa1+a2+b2)2+(1+b2)(pb1+a2+b2)2+2ab(pa1+a2+b2)(pb1+a2+b2)2pa(pa1+a2+b2)2pb(pb1+a2+b2)+p2=1(1+a2+b2)2[(1+a2)p2a2+(1+b2)p2b2+2p2a2b22p2(a2+b2)(1+a2+b2)+p2(1+a2+b2)2]=p2(1+a2+b2)2[(a2+b2)(1+a2+b2)+(1a2b2)(1+a2+b2)]=p2(1+a2+b2)2[a2+b2+1a2b2](1+a2+b2)=p21+a2+b2=p2c21+a2c2+b2c2=p2a2+b2+c2
Commented by mrW1 last updated on 13/Jun/17
this way is lengthy, but the result is the  same.
thiswayislengthy,buttheresultisthesame.

Leave a Reply

Your email address will not be published. Required fields are marked *