Question Number 15741 by ajfour last updated on 13/Jun/17

Answered by mrW1 last updated on 13/Jun/17

Commented by ajfour last updated on 13/Jun/17

Commented by mrW1 last updated on 13/Jun/17
![Solution in conventional way: z=((p−(ax+by))/c)=p′−(a′x+b′y) with p′=(p/c), a′=(a/c), b′=(b/c) S=x^2 +y^2 +z^2 =x^2 +y^2 +p′^2 −2p′(a′x+b′y)+(a′x+b′y)^2 =x^2 +y^2 +p′^2 −2p′(a′x+b′y)+a′^2 x^2 +b′^2 y^2 +2a′b′xy =(1+a′^2 )x^2 +(1+b′^2 )y^2 +2a′b′xy−2p′a′x−2p′b′y+p′^2 (∂S/∂x)=2(1+a′^2 )x+2a′b′y−2p′a′=0 ⇒(1+a′^2 )x+a′b′y=p′a′ (∂S/∂y)=2(1+b′^2 )y+2a′b′x−2p′b′=0 ⇒(1+b′^2 )y+a′b′x=p′b′ ⇒y=((p′b′)/((1+b′^2 )))−((a′b′)/((1+b′^2 )))x ⇒(1+a′^2 )x−(((a′b′)^2 )/((1+b′^2 )))x=p′a′−((p′a′b′^2 )/((1+b′^2 ))) ⇒(((1+a′^2 )(1+b′^2 )−(a′b′)^2 )/((1+b′^2 )))x=((p′a′)/((1+b′^2 ))) ⇒x=((p′a′)/((1+a′^2 )(1+b′^2 )−(a′b′)^2 ))=((p′a′)/(1+a′^2 +b′^2 )) ⇒y=((p′b′)/((1+a′^2 )(1+b′^2 )−(a′b′)^2 ))=((p′b′)/(1+a′^2 +b′^2 )) S_(min) =(1+a′^2 )(((p′a′)/(1+a′^2 +b′^2 )))^2 +(1+b′^2 )(((p′b′)/(1+a′^2 +b′^2 )))^2 +2a′b′(((p′a′)/(1+a′^2 +b′^2 )))(((p′b′)/(1+a′^2 +b′^2 )))−2p′a′(((p′a′)/(1+a′^2 +b′^2 )))−2p′b′(((p′b′)/(1+a′^2 +b′^2 )))+p′^2 =(1/((1+a′^2 +b′^2 )^2 ))[(1+a′^2 )p′^2 a′^2 +(1+b′^2 )p′^2 b′^2 +2p′^2 a′^2 b′^2 −2p′^2 (a′^2 +b′^2 )(1+a′^2 +b′^2 )+p′^2 (1+a′^2 +b′^2 )^2 ] =((p′^2 )/((1+a′^2 +b′^2 )^2 ))[(a′^2 +b′^2 )(1+a′^2 +b′^2 )+(1−a′^2 −b′^2 )(1+a′^2 +b′^2 )] =((p′^2 )/((1+a′^2 +b′^2 )^2 ))[a′^2 +b′^2 +1−a′^2 −b′^2 ](1+a′^2 +b′^2 ) =((p′^2 )/(1+a′^2 +b′^2 )) =((p^2 /c^2 )/(1+(a^2 /c^2 )+(b^2 /c^2 )))=(p^2 /(a^2 +b^2 +c^2 ))](https://www.tinkutara.com/question/Q15774.png)
Commented by mrW1 last updated on 13/Jun/17
