Menu Close

find-the-minimum-value-of-y-b-2-sin-2-x-a-2-cos-2-x-




Question Number 59220 by Aditya789 last updated on 06/May/19
find the minimum value of  y= (b^2 /(sin^2 x))+(a^2 /(cos^2 x))
findtheminimumvalueofy=b2sin2x+a2cos2x
Answered by MJS last updated on 06/May/19
(dy/dx)=−((2b^2 cos x)/(sin^3  x))+((2a^2 sin x)/(cos^3  x))=0  sin x =t  cos x =(√(1−t^2 ))  2(((a^2 −b^2 )t^4 +2b^2 t^2 −b^2 )/(t^3 (1−t^2 )^(3/2) ))=0  ⇒ t=±(√(b/(a+b))) ∨ t=±(√(b/(b−a)))  ⇒ y=(a+b)^2  ∨ y=(a−b)^2   ⇒ the minimal value of y=min((a+b)^2 , (a−b)^2 )
dydx=2b2cosxsin3x+2a2sinxcos3x=0sinx=tcosx=1t22(a2b2)t4+2b2t2b2t3(1t2)32=0t=±ba+bt=±bbay=(a+b)2y=(ab)2theminimalvalueofy=min((a+b)2,(ab)2)
Commented by MJS last updated on 06/May/19
you′re welcome!
yourewelcome!
Commented by mr W last updated on 06/May/19
you are right sir! thanks!
youarerightsir!thanks!
Answered by tanmay last updated on 06/May/19
another approach  y=b^2 cosec^2 x+a^2 sec^2 x  y=a^2 (1+tan^2 x)+b^2 (1+cot^2 x)  y=a^2 +b^2 +a^2 tan^2 x+b^2 cot^2 x  t=tanx  y=a^2 +b^2 +a^2 t^2 +(b^2 /t^2 )  y=(a^2 +b^2 )+(at−(b/t))^2 +2×at×(b/t)  y=a^2 +b^2 +2ab+(at−(b/t))^2   y_(min) =a^2 +2ab+b^2 =(a+b)^2    [when (at−(b/t))^2 =0]  y_(min) =(a+b)^2    when at−(b/t)=0  t^2 =(b/a)→t=±(√(b/a))   tanx=±(√(b/a))
anotherapproachy=b2cosec2x+a2sec2xy=a2(1+tan2x)+b2(1+cot2x)y=a2+b2+a2tan2x+b2cot2xt=tanxy=a2+b2+a2t2+b2t2y=(a2+b2)+(atbt)2+2×at×bty=a2+b2+2ab+(atbt)2ymin=a2+2ab+b2=(a+b)2[when(atbt)2=0]ymin=(a+b)2whenatbt=0t2=bat=±batanx=±ba

Leave a Reply

Your email address will not be published. Required fields are marked *