Menu Close

Find-the-n-th-derivative-of-f-x-sin-x-lnx-




Question Number 93732 by Ar Brandon last updated on 14/May/20
Find the n-th derivative of  f(x)=sin(x)lnx
Findthenthderivativeoff(x)=sin(x)lnx
Commented by mathmax by abdo last updated on 14/May/20
f^((n)) (x) =Σ_(k=0) ^n  C_n ^k  (lnx)^((k))  (sinx)^((n−k))   =(lnx)sin(x+((nπ)/2)) +Σ_(k=1) ^n  C_n ^k  (lnx)^((k)) sin(x+(((n−k)π)/2))  we have (lnx)^′  =(1/x) ⇒(ln(x))^((k))  =((1/x))^((k−1))  =(((−1)^(k−1) (k−1)!)/x^k )  ⇒f^((n)) (x) =lnx sin(x+((nπ)/2))+Σ_(k=1) ^n  C_n ^k  (((−1)^(k−1) (k−1)!)/x^k )×sin(x+(((n−k)π)/2))
f(n)(x)=k=0nCnk(lnx)(k)(sinx)(nk)=(lnx)sin(x+nπ2)+k=1nCnk(lnx)(k)sin(x+(nk)π2)wehave(lnx)=1x(ln(x))(k)=(1x)(k1)=(1)k1(k1)!xkf(n)(x)=lnxsin(x+nπ2)+k=1nCnk(1)k1(k1)!xk×sin(x+(nk)π2)

Leave a Reply

Your email address will not be published. Required fields are marked *