Question Number 85169 by jagoll last updated on 19/Mar/20
$$\mathrm{find}\:\mathrm{the}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{derivative}\:\mathrm{of}\:\mathrm{function} \\ $$$$\mathrm{y}\:=\:\sqrt{\mathrm{sin}\:\mathrm{x}}\:\mathrm{by}\:\mathrm{Leibniz}\:\mathrm{theorem} \\ $$
Commented by mr W last updated on 19/Mar/20
$${i}\:{don}'{t}\:{think}\:{Leibniz}\:{theorem}\:{helps} \\ $$$${in}\:{this}\:{case}. \\ $$
Commented by jagoll last updated on 19/Mar/20
$$\mathrm{what}\:\mathrm{method}\:\mathrm{for}\:\mathrm{solving}\:\mathrm{this} \\ $$$$\mathrm{question}\:\mathrm{sir}? \\ $$
Commented by mr W last updated on 19/Mar/20
$${there}\:{is}\:{no}\:{nice}\:{method}\:{for}\:{this}\:{case}, \\ $$$${and}\:{for}\:{the}\:{most}\:{cases}! \\ $$$${certainly}\:{you}\:{can}\:{always}\:{solve}\:{it} \\ $$$${conventionally},\:{but}\:{without}\:{short}\:{cut}. \\ $$
Commented by jagoll last updated on 19/Mar/20
$$\mathrm{i}\:\mathrm{think}\:\mathrm{there}\:\mathrm{is}\:\mathrm{a}\:\mathrm{practical}\:\mathrm{method} \\ $$
Commented by mr W last updated on 19/Mar/20
$${can}\:{you}\:{show}\:{this}\:{practical}\:{method}? \\ $$