Menu Close

find-the-nature-of-n-1-1-n-k-1-n-1-k-




Question Number 32932 by abdo imad last updated on 06/Apr/18
find the nature of  Σ_(n=1) ^∞   (1/(nΣ_(k=1) ^n  (1/k))) .
$${find}\:{the}\:{nature}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}}\:. \\ $$
Commented by prof Abdo imad last updated on 11/Apr/18
we have  Σ_(n=1) ^∞  (1/k) =H_n   ∼ ln(n) ⇒      (1/(n Σ_(k=1) ^n  (1/k)))  ∼  (1/(n ln(n)))  but  u_n = (1/(n ln(n)))  is decreasing for n≥2  so Σ(...) and  ∫_2 ^(+∞)    (dt/(t ln(t)))  are the same nsture  ch.ln(t)=x give  ∫_2 ^∞     (dt/(t ln(t))) = ∫_(ln(2)) ^(+∞)    ((e^x  dx)/(e^x  x)) = ∫_(ln(2)) ^(+∞)  (dx/x)  this integral  is divergent ⇒ the serie is divergent .
$${we}\:{have}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{k}}\:={H}_{{n}} \:\:\sim\:{ln}\left({n}\right)\:\Rightarrow \\ $$$$\:\:\:\:\frac{\mathrm{1}}{{n}\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}}\:\:\sim\:\:\frac{\mathrm{1}}{{n}\:{ln}\left({n}\right)}\:\:{but}\:\:{u}_{{n}} =\:\frac{\mathrm{1}}{{n}\:{ln}\left({n}\right)} \\ $$$${is}\:{decreasing}\:{for}\:{n}\geqslant\mathrm{2}\:\:{so}\:\Sigma\left(…\right)\:{and}\:\:\int_{\mathrm{2}} ^{+\infty} \:\:\:\frac{{dt}}{{t}\:{ln}\left({t}\right)} \\ $$$${are}\:{the}\:{same}\:{nsture}\:\:{ch}.{ln}\left({t}\right)={x}\:{give} \\ $$$$\int_{\mathrm{2}} ^{\infty} \:\:\:\:\frac{{dt}}{{t}\:{ln}\left({t}\right)}\:=\:\int_{{ln}\left(\mathrm{2}\right)} ^{+\infty} \:\:\:\frac{{e}^{{x}} \:{dx}}{{e}^{{x}} \:{x}}\:=\:\int_{{ln}\left(\mathrm{2}\right)} ^{+\infty} \:\frac{{dx}}{{x}}\:\:{this}\:{integral} \\ $$$${is}\:{divergent}\:\Rightarrow\:{the}\:{serie}\:{is}\:{divergent}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *