Menu Close

find-the-nature-of-the-serie-n-0-n-1-2-n-




Question Number 26402 by abdo imad last updated on 25/Dec/17
find the nature of the serie  Σ_(n=0) ^∝ ((n!)/(1+2^n ))  .
$${find}\:{the}\:{nature}\:{of}\:{the}\:{serie}\:\:\sum_{{n}=\mathrm{0}} ^{\propto} \frac{{n}!}{\mathrm{1}+\mathrm{2}^{{n}} }\:\:. \\ $$
Commented by prakash jain last updated on 25/Dec/17
n!=2^(n−1) .Π_(j=3) ^n ((j/2))  lim_(n→∞) ((n!)/(1+2^n ))=∞
$${n}!=\mathrm{2}^{{n}−\mathrm{1}} .\underset{{j}=\mathrm{3}} {\overset{{n}} {\prod}}\left(\frac{{j}}{\mathrm{2}}\right) \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{n}!}{\mathrm{1}+\mathrm{2}^{{n}} }=\infty \\ $$
Commented by abdo imad last updated on 25/Dec/17
 ((n!)/(1+2^n )) ∼ v_n     /  v_n   = ((n!)/2^n ) >0   (v_(n+1) /v_n )   =  ((((n+1)!)/2^(n+1) )/((n!)/2^n ))  =  (2^n /2^(n+1) )  (((n+1)!)/(n!))  =  (1/2)(n+1)_(n−>∝) −−>∝  ⇒   Σ_(n=0) ^∝      ((n!)/(1+2^n ))  is divergent.
$$\:\frac{{n}!}{\mathrm{1}+\mathrm{2}^{{n}} }\:\sim\:{v}_{{n}} \:\:\:\:/\:\:{v}_{{n}} \:\:=\:\frac{{n}!}{\mathrm{2}^{{n}} }\:>\mathrm{0}\: \\ $$$$\frac{{v}_{{n}+\mathrm{1}} }{{v}_{{n}} }\:\:\:=\:\:\frac{\frac{\left({n}+\mathrm{1}\right)!}{\mathrm{2}^{{n}+\mathrm{1}} }}{\frac{{n}!}{\mathrm{2}^{{n}} }}\:\:=\:\:\frac{\mathrm{2}^{{n}} }{\mathrm{2}^{{n}+\mathrm{1}} }\:\:\frac{\left({n}+\mathrm{1}\right)!}{{n}!}\:\:=\:\:\frac{\mathrm{1}}{\mathrm{2}}\left({n}+\mathrm{1}\right)_{{n}−>\propto} −−>\propto \\ $$$$\Rightarrow\:\:\:\sum_{{n}=\mathrm{0}} ^{\propto} \:\:\:\:\:\frac{{n}!}{\mathrm{1}+\mathrm{2}^{{n}} }\:\:{is}\:{divergent}. \\ $$
Answered by prakash jain last updated on 25/Dec/17
by limit test series does not converge.
$$\mathrm{by}\:\mathrm{limit}\:\mathrm{test}\:\mathrm{series}\:\mathrm{does}\:\mathrm{not}\:\mathrm{converge}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *