Menu Close

find-the-nth-term-and-the-sum-to-n-termof-the-following-seried-i-4-6-9-13-18-ii-11-23-59-167-




Question Number 40218 by scientist last updated on 17/Jul/18
find the nth term and the sum to n  termof the following seried  (i) 4+6+9+13+18+...  (ii) 11+23+59+167+...
findthenthtermandthesumtontermofthefollowingseried(i)4+6+9+13+18+(ii)11+23+59+167+
Answered by math1967 last updated on 17/Jul/18
i)4+6+9+13+18+..=Sn             4+6+9+13+...=Sn  by subtracting   4+{2+3+4+5+......(n−1)term}=t_n   ∴t_n =4+(((n−1)(n+2))/2)=((n^2 +n+6)/2)  now S_n =(1/2)(1^2 +2^2 +....n^2 )+(1/2)(1+2+..)+3n  =(1/(12))(n+1)(2n+1)+(1/4)n(n+1)+3n
i)4+6+9+13+18+..=Sn4+6+9+13+=Snbysubtracting4+{2+3+4+5+(n1)term}=tntn=4+(n1)(n+2)2=n2+n+62nowSn=12(12+22+.n2)+12(1+2+..)+3n=112(n+1)(2n+1)+14n(n+1)+3n
Commented by scientist last updated on 17/Jul/18
from this solution i guess,   suppose (1+2+3+4+...n)  =((n(n+1))/2)  so where did u now get (n−1)(n+2) instead   (n−1)(n)
fromthissolutioniguess,suppose(1+2+3+4+n)=n(n+1)2sowheredidunowget(n1)(n+2)instead(n1)(n)
Commented by math1967 last updated on 18/Jul/18
4+{2+3+4+...(n−1)term}  4+(((n−1){2×2+(n−1−1)×1})/2)  [using S_(n ) =(n/2){2a+(n−1)d}]  4+(((n−1)(4+n−2))/2)  4+(((n−1)(n+2))/2)=((8+n^2 +n−2)/2)=((n^2 +n+6)/2)
4+{2+3+4+(n1)term}4+(n1){2×2+(n11)×1}2[usingSn=n2{2a+(n1)d}]4+(n1)(4+n2)24+(n1)(n+2)2=8+n2+n22=n2+n+62
Commented by scientist last updated on 18/Jul/18
Got it sir, shukrah
Gotitsir,shukrah
Answered by math1967 last updated on 17/Jul/18
ii)11+23+59+167+...                11+23 +59+....  11+12(1+3+3^2 +....)=t_n   t_n =6×3^(n−1) +5  S_n =6(1+3+3^2 +....)+5n  =6×((3^n −1)/(3−1)) +5n=3(3^n −1)+5n
ii)11+23+59+167+11+23+59+.11+12(1+3+32+.)=tntn=6×3n1+5Sn=6(1+3+32+.)+5n=6×3n131+5n=3(3n1)+5n

Leave a Reply

Your email address will not be published. Required fields are marked *