Menu Close

Find-the-number-m-of-ways-to-partition-10-students-into-four-team-so-that-two-team-contains-3-students-and-two-team-contains-2-students-




Question Number 116883 by bemath last updated on 07/Oct/20
Find the number m of ways to  partition 10 students into four team  so that two team contains 3 students  and two team contains 2 students .
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{m}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{to} \\ $$$$\mathrm{partition}\:\mathrm{10}\:\mathrm{students}\:\mathrm{into}\:\mathrm{four}\:\mathrm{team} \\ $$$$\mathrm{so}\:\mathrm{that}\:\mathrm{two}\:\mathrm{team}\:\mathrm{contains}\:\mathrm{3}\:\mathrm{students} \\ $$$$\mathrm{and}\:\mathrm{two}\:\mathrm{team}\:\mathrm{contains}\:\mathrm{2}\:\mathrm{students}\:. \\ $$
Answered by john santu last updated on 07/Oct/20
There are m′ = ((10!)/(3!.3!.2!.2!)) = 25,200 such ordered partition  Since the teams form an unordered partition  we divide m′ by 2! because of the two  cells with 3 elements each and 2!   because of the two cells with 2 elements each  Thus m = ((25,200)/(2!.2!)) = 6300
$${There}\:{are}\:{m}'\:=\:\frac{\mathrm{10}!}{\mathrm{3}!.\mathrm{3}!.\mathrm{2}!.\mathrm{2}!}\:=\:\mathrm{25},\mathrm{200}\:{such}\:{ordered}\:{partition} \\ $$$${Since}\:{the}\:{teams}\:{form}\:{an}\:{unordered}\:{partition} \\ $$$${we}\:{divide}\:{m}'\:{by}\:\mathrm{2}!\:{because}\:{of}\:{the}\:{two} \\ $$$${cells}\:{with}\:\mathrm{3}\:{elements}\:{each}\:{and}\:\mathrm{2}!\: \\ $$$${because}\:{of}\:{the}\:{two}\:{cells}\:{with}\:\mathrm{2}\:{elements}\:{each} \\ $$$${Thus}\:{m}\:=\:\frac{\mathrm{25},\mathrm{200}}{\mathrm{2}!.\mathrm{2}!}\:=\:\mathrm{6300}\: \\ $$
Commented by bemath last updated on 07/Oct/20
yes i got the same answer
$$\mathrm{yes}\:\mathrm{i}\:\mathrm{got}\:\mathrm{the}\:\mathrm{same}\:\mathrm{answer} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *